

Hygrothermal Modeling: a Numerical and Experimental Study on Drying

Michele Bianchi Janetti¹, Fabian Ochs¹, Luigi P. M. Colombo²

¹Unit for Energy Efficient Buildings, University of Innsbruck ²Dipartimento di Energia, Politecnico di Milano

> COMSOL CONFERENCE 2016 MUNICH

Is Comsol really adequate for hygrothermal simulation in porous building materials?

Advantages

Limitations

Arbeitsbereich Energieeffizientes Bauen universität innsbruck

Contents

Model

- Drying test
- Mathematical model

Results

- Comparison with experimental data
- Numerical quality (mass conservation)

Arbeitsbereich

Energieeffizientes Bauen

universität innsbruck

Drying test

Specimens (calcium silicate)

Boundary conditions

case	θ∞ [°C]	φ∞ [-]	α [W/m2K]	β [s/m]
bc1	23.5	0.52	9.32	2.86·10 ⁻⁸
bc2	25.0	0.40	11.84	4.51·10 ⁻⁸
bc3	30.0	0.35	12.60	8.31·10 ⁻⁸

Arbeitsbereich

Energieeffizientes Bauen universität innsbruck

Mathematical model

Driving equations (coefficient form PDE)

u...water content

Dependent variables: φ...relative humidity T...temperature

Transport coefficients

Arbeitsbereich Energieeffizientes Bauen

universität innsbruck

Mathematical model

0.04

Driving equations (coefficient form PDE)

1

universität innsbruck

Gravimetric analysis

Weighing at different times

Arbeitsbereich

Energieeffizientes Bauen

Arbeitsbereich Energieeffizientes Bauen

universität innsbruck

Surface distributions

Arbeitsbereich Energieeffizientes Bauen

universität innsbruck

Infrared thermography

innsbruck

10

10

10

10

Mass balance ratio

Arbeitsbereich

Т

Energieeffizientes Bauen

universität innsbruck

Numerical setup

Parameter	Value / Setup
Mesh elements	4000
Element ratio	5
Shape function	Lagrange
Element order	linear
Absolute tolerance	10 ⁻⁵
Relative tolerance	10-4
Time step	variable
Time s. method	BDF
Max. BDF order	5

innsbruc

Influence of absolute tolerance and mesh

Conclusions

- Good agreement with the experimental data
- No mass conservative solutions
- Mass error negligible with a proper numerical setup

Outlook

Is a mass conservative solution possible with Comsol?

Mass balance: water content *u* as dependent variable

$$\frac{\partial u}{\partial t} = \nabla \cdot \left(K_{21} \nabla T + K_{22}^* \nabla u \right)$$

Outlook

Is a mass conservative solution possible with Comsol?

Mass balance: water content *u* as dependent variable $\int \frac{\partial u}{\partial t} = \nabla \cdot \left(K_{21} \nabla T + K_{22}^* \nabla u \right)$ Damping coefficient = 1