

Importance of Wintertime Phase Change in Modeling Moisture Dynamics in Road Systems, Sweden

Hedi Rasul^{1&2}, Mousong Wu^{1&3}, and Bo Olofsson¹ ¹KTH Royal Institute of Technology, SE-10044 Stockholm Sweden, ²Koya University, Erbil-Koya, Kurdistan Regional Government, ³Lund University, SE-22100 Lund, Sweden.

Outline

Result & Discussion

Conclusion

Background

Result & Discussio

Aim : to show the importance of phase change in modeling moisture dynamics in road system.

Background

Method

esult & Discussion

Method

esult & Discussion

Model-1

Model-2

▲ △u Coefficient Form PDE (theta_u)

Coefficient Form PDE 1

🖰 Zero Flux 1

Initial Values 1

⊖ Flux/Source 1

E Flux/Source 2

E Flux/Source 3

Elux/Source 4

▲ △u Coefficient Form PDE 2 (T)

Coefficient Form PDE 1

는 Zero Flux 1

Initial Values 1

Dirichlet Boundary Condition 1

Dirichlet Boundary Condition 2

A Mesh 1

🔺 🐋 Study 1

Step 1: Time Dependent

"Name	Expression		Unit	Description	
Kh	Ks*S^l*(1-(1-S^(1/m))^m)^2		m/s	Hydraulic conductivity	
Imp	10^(-10*theta_ice)			Impedance factor	
S	min(max((theta_u-theta_r)/(theta_s-theta_r),0.01),0.9)			Saturation	
C_water	a0 [1/m]*m/(1-m)*S^(1/m)*(1-S^(1/m))^m		1/m	Specific water capacity	
theta_ice	min((theta_s-theta_r),(theta_u*B))			Ice content	
Ср	Cp_water*theta_u+Cp_solid*(1-theta_s)+Cp_ice*theta_ice		J/(kg·K)	Heat capacity of soil	
K_thermal	K_ice*theta_ice+K_water*theta_u+K_solid*(1-theta_s)		W/(m·K)	Thermal conductivity of so	
D_water	Kh*Imp/(theta_s-theta_r)/C_water		m²/s	Diffusivity of water	
Kg	Ks*S^I*(1-(1-S^(1/m))^m)^2		m/s	Vertical hydraulic conduct.	
В	FT(T[1/K])			Freezing characteristic	
theta	theta_u+rho_ratio*theta_ice			Total water content	
 Cp solid	700[J/kg/K]	700 J/(kg·K)	Heat ca	apcaity of solid	
K_ice	2.31[W/m/K]	2.31 W/(m·K)	Therma	Thermal conductivity of ice	
K_water	0.613[W/m/K]	0.613 W/(m·K)	Therma	Thermal conductivity of w	
K_solid	8.09[W/m/K]	8.09 W/(m·K)	Thermal conductivity of s		
Tf	272.44[K]	272.44 K	Freezing point		
a	9.81 [m^2/s]	9.81 m ² /s	Gravity		
9					

Method

Parameters

¥

Result & Discussion

- Temperature
- Moisture content changes

Temperature: Model-1 (Built-in)

Background

Background

hod

Result & Discussion

Temperature comparison

Model-2 (PDE)

Model-1 (Built-in)

Model-2 (PDE)

Background

d Res

Result & Discussion

Moisture : Model-2 (PDE)

Background

n 📗

d Res

Result & Discussion

Moisture comparison (TDR locations)

Moisture comparison TDR_Moisture (Measured data)

Moisture comparison

Moisture comparison

From Built-in model, only 3 points under the asphalt

From PDE-model, for points under the asphalt the road shoulder

Moisture comparison (Correlations)

From Built-in model, only 3 points under the asphalt

From PDE-model, for points under the asphalt the road shoulder

- Temperature simulations were not affected much by considering freezing and thawing.
- Moisture content simulations performed better with PDE model with considering freezing and thawing.
- PDE model can predict the fluctuations both under the road and the road shoulder.

Conclusion

Future works

- Sensitivity analysis with simulating longer periods
- Simulations and comparisons with other field monitoring data, i.e; ERT and Tracer test.
- New application for solving heat and solute transport in road layers

Thanks! Questions?

