COMSOL CONFERENCE 2016 BOSTON

Simulation of Diffuse Optical Tomography using COMSOL Multiphysics®

S.A.M. Kirmani¹, L. Velmanickam¹, D. Nawarathna¹, S.S. Sherif², and I.T. Lima Jr.¹ ¹Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND, USA ²Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB, Canada

Motivation

- Diagnostic procedures essential for proper diagnosis of medical conditions
 - X-rays, CT-Scan, MRI etc.
 - Employ harmful electromagnetic radiations
- Safe alternative: optical tomography techniques
 - Employ infrared light
 - Biological tissues turbid media
 - Scattering mean free path = 0.1 mm
 - Absorption mean free path = 10 100 mm

Diffuse Photon Density Waves (DPDW)

- Frequency domain optical tomography technique based on diffusive propagation of light
- Employs intensity modulated light sources
- Determine the optical properties of tissues
- Important for many biomedical applications.
 - Observe and analyze cutaneous and subcutaneous tissue damage
 - Diagnosis and treatment of pressure ulcers, skin and tissue injuries, wounds and burns.
- Our simulation produced results that are two orders of magnitude faster than the equivalent Monte Carlo method of light transport in tissues.

Light inside biological tissues

- Biological tissues
 - Absorption Coefficient µ_a
 - Scattering Coefficient µ_s
 - Anisotropy Factor g
- Radiative transfer equation (RTE)
 - Diffusion equation (DE)
- Monte Carlo method

Radiative transfer equation

Radiative transfer equation (RTE)

$$\frac{1}{\nu}\frac{\partial L(\vec{r},\hat{s},t)}{\partial t} = -\hat{s} \cdot \nabla L(\vec{r},\hat{s},t) - \mu_t L(\vec{r},\hat{s},t) + \mu_s \int_{4\pi} L(\vec{r},\hat{s},t) p(\hat{s},\hat{s})d\hat{s} + S(\vec{r},\hat{s},t)$$

Light radiance

• Light power per unit area travelling in the \hat{s} direction at position \vec{r} and time t

$$L(\vec{r}, \hat{s}, t) = \frac{1}{4\pi} \varphi(\vec{r}, t) + \frac{3}{4\pi} J(\vec{r}, t) \cdot \hat{s}$$

Radiative transfer equation

Photon fluence rate

Total power per unit area moving radially outward from the infinitesimal volume element at position r and time t

$$\varphi(\vec{r},t) \equiv \int_{4\pi} L(\vec{r},\hat{s},t) \, ds$$

- Photon flux
 - Power per unit area travelling in the \hat{s} direction at position \vec{r} and time t

$$J(\vec{r},t) \equiv \int_{4\pi} L(\vec{r},\hat{s},t)\hat{s} \, ds$$

Diffusion equation

Diffusion equation

$$-\nabla \cdot \left(\mathbf{D}(\vec{r})\nabla \varphi(\vec{r},t) \right) + \nu \mu_{a}(\vec{r}) \,\varphi(\vec{r},t) + \frac{\partial \varphi(\vec{r},t)}{\partial t} = \nu \mathbf{S}(\vec{r},t)$$

Photon diffusion coefficient

$$D(\vec{r}) \equiv \frac{\nu}{3\left(\mu_{s}(\vec{r}) + \mu_{a}(\vec{r})\right)}$$

Diffusion equation for DPDW (Helmholtz equation) $-\nabla \cdot \left(D(\vec{r})\nabla U(\vec{r}) \right) + \left(\mu_a(\vec{r}) - \frac{i\omega}{\nu} \right) U(\vec{r}) = S_{ac}(\vec{r}).$

Simulation Model

d

Figure 1. (a) Geometrical model of the tissue (b) Tissue cross-section.

DPDW phase against source – detector separation

Figure 2. DPDW phase against source – detector separations for two different concentrations of aqueous intralipid solution

DPDW intensity attenuation against source – detector separation

Figure 3. DPDW intensity attenuation against source – detector separation

Thank You

Questions?

S.A.M. Kirmani syedabdulmannan.kirm@ndsu.edu