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Abstract: Continuous dynamic models,
e.g. Comsol based simulations, play – be-
sides statistical or iterative methods – a
mayor role in theoretical ecology; in forecast-
ing and management, but also in systems
analysis. Ecological issues generally com-
prise highly interacting agents and/or un-
known side effects. We here show how com-
bining direct simulation with Comsol with
simple optimization tools in Matlab helps in
research in ecology. We analyse the dynam-
ics of a physiologically structured population
under changing temperature and food condi-
tions in two ways. At first we conduct virtual
experiments aiming at efficient experimen-
tal design for parameter identification, after-
wards we accomplish simulations for process
analysis in real life experiments for the the
freshwater shrimp Gammarus pulex.
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1 Introduction

Climate change surely has an impact on eco-
logical systems and forecasting their reaction
is a major goal in nowadays ecological re-
search, [2] and [3]. Dynamic models can be a
reliable help in these attempts if they include
the governing processes and are correctly pa-
rameterized. When it comes to ecological
systems comprising highly coupled processes
like dynamics of populations in their envi-
ronment one might choose between compil-
ing a range of well analyzed dependencies
with the risk of unjustified omission of oth-
ers or integrative modelling with the risk of
mistaken process attribution. In this paper
we show how preceding simulation and sub-
sequent optimization tools can help in de-

signing effective experiments for sound pro-
cess analysis and parameter identification.
We do so for the dynamics of physiologi-
cally structured populations of the freshwa-
ter shrimp Gammarus pulex under changing
temperature and food conditions.

2 System components
and equations

We suppose that the population dynamics of
G. pulex is mainly affected by its own pop-
ulation density, food supply and tempera-
ture. By this reason the following constitut-
ing equations are assembled:

Individual growth of an animal follows
the von Bertalanffy equation, [6], which as-
sumes that anabolic and catabolic processes
scale with the animal’s surface and volume
respectively:

dw

dt
= g(w) = γw

2
3 − ρw

with γ [µg−
2
3 d−1] and ρ [µg−1 d−1] being

rate constants and w weight [µg]. When
food F [1] is limited, the equation modifies
to

dw

dt
= g(F,w) = γ

F

F + Fh
w

2
3 − ρw

with the half saturation constant Fh [1]. Be-
sides, when temperature is other than opti-
mal, the equation is complemented by

dw

dt
= g(F, T,w) = Φ(T )(γ

F

F + Fh
w

2
3 − ρw)

with Φ(T ) a temperature response function
following O’Neill, [5]:

Φ(T ) = k(
Tmax − T

Tmax − Topt
)pe

p
T−Topt

Tmax−Topt
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where p = 1
400W 2(1+

√
1 + 40

W )2, with W =
(q10−1)(Tmax−Topt) and shape parameters
q10, Tmax, Topt and possibly Tmin compris-
ing a number of divergent physiological pro-
cesses related to temperature.

However, an overall, and weight struc-
tured, population is described by a weight
density function n(w, t) and its dynamic fol-
lows

∂n(w, t)
∂t

= −∂g(F, T,w)n(w, t)
∂w

+ λ
∂2n(w, t)

∂w2

−p−(F, T,w, . . .) + p+(F, T,w, . . .)

Here λ∂2n(w,t)
∂w2 describes stochasticity of

physiological processes; p− and p+ are birth
and death terms.

Mortality might be due to a number
of external effects like temperature T and
food F , again expressed in a way similar to
their influence on growth, but it might also
be due to internal effects like weight w and
age, e.g. expressed by t. We come back to
that in section 4.

Birth is expressed as the total number
of offspring B(F, T, t, . . .) distributed over
small weights w with a density function
Π(w) to p+(w, t, . . .) = B(F, T, t, . . .)Π(w).
The total number of offspring is the result
of an integration of population density over
weight, where fertility may depend on weight
w, food F and temperature T , e.g.

B(F, t) =
∫ wmax

wmin

rmax
F

F + Fh
w

2
3 n(w, t)dw

A number of additional modifications of
the population density model itself will be
taken into consideration later on. For the
time being there are two system compart-
ments left: food and temperature.

The latter can be given explicitly, as a
data set of true weather conditions or as a
function of time which controlled the tem-
perature during the experiments.

In an experimental setting food F might
also be controlled, for example it may be
kept in abundance, however in nature is is
coupled to the population as follows:

dF

dt
= L(t, T )

−ImaxΦ(T )
F

F + Fh

∫ wmax

0

w
2
3 n(w, t)dw

where Imax is efficiency of food uptake and
L(t) a possible source term combining litter
fall and microbial processing. Note that food
is given in an ordinary differential equation
whereas population is given in an partial dif-
ferential equation.

3 Parameter
identification

One major challenge in ecology is to de-
fine system boundaries properly, another is
to identify predominant processes correctly.
Modern ecological experiments aim at in-
tegral studies combined with mathemati-
cal tools rather than conducting countless
highly specific laboratory studies for single
parameters.

We appreciate Comsol multiphysics as
a tool with which quickly to do both, ex-
clude, include and modify processes on the
one hand and have multiple visualisations of
the results on the other hand. However, af-
ter creatively defining hypotheses about the
ecological system under consideration, their
validity should be tested against experimen-
tal data by statistical analysis. The facility
to combine Comsol multiphysics scripts with
Matlab appeared appealing to us as we al-
ready used Matlab for data evaluation.

Experimental data on weight structured
population dynamics generally consist of fre-
quencies of classified mean weights ni for a
couple of times tj . Optimization tools are
confronted with the minimization of the sum
of squared residuals

L(θ) =
∑

i

∑
j

(ni(tj)− n̂i(tj , θ))2

based on simulation results n̂i(tj , θ) for a
given set of parameters θ. Goodness of fit
was evaluated using model efficiency, [1],

ME = 1−
∑

j

∑
i(ni(tj)− n̂i(tj))2∑

j

∑
i(ni(tj)− n̄(tj))2

with n̄(tj) being the mean of the mean
weights at time tj .

4 Application in
experimental design

Before conducting integral ecological stud-
ies it is important to make sure that within



determinated boundaries the required pro-
cesses and related parameters can be iden-
tified. We here show how well thought-out
experimental design can be achieved based
on virtual experiments and can help reduce
costs of real life experiments. Synthetic data
were acquired via probing direct simulation
results on four monitoring times (analogu-
ous to a real experimental set up described
in the last subsection) and adding a normally
distributed error respresenting measurement
errors.

4.1 Reducing experimental
effort

The dependence of anabolic and catabolic
processes on temperature was expressed as
O’Neill function. Earlier experiments deter-
mined the related parameters via piles of an-
imals fed and kept at constant but differing
temperatures being thoroughly monitored in
their growth, [4]. Our first experiment shows
that one (possibly subdivided however) pop-
ulation kept at time dependent temperature
might suffice to determine all of the param-
eters appearing in the O’Neill function and
the anabolic and catabolic rates γ and ρ. In
this experiment we created a virtual reality
that was based on true weather conditions,
that is true temperatures measured during
the experiment described in the last subsec-
tion. In the same vain, we sampled our vir-
tual reality at the same monitoring times as
was done in the experiment to be explained.

Figure 1 displays the close match be-
tween data and optimization results, also
reflected by a model efficiency of 0.9785,
compared to 0.9921 for the model based on
the given parameters (Remember that the
difference to 1 is due to the normally dis-
tributed error that was added). However,
the table below compares given and found
parameters. We find that given parameters
are not always within standard deviation of
the found parameters and suppose that with
temperature data varying in the full range
the O’Neill function covers model efficiency
would be closer to one.

γ ρ Topt q10

direct 0.16 0.04 17.5 1.70
optimized 0.32 0.06 18.3 2.58
std. dev. 0.02 0.05 0.05 0.10

Figure 1: Weight structured population
densities taking into account temperature

dependent growth, here the optimized
parameter set

4.2 Piloting multi-component
experiments

Both the traditional type of experiments to
find O’Neill parameters as well as the one
explained above are based on food kept in
abundance. In natural settings food supply
varies and is governed by the dynamics of
both the population itself and all the actors
in the food web. Insufficient food supply re-
sults in a decrease of anabolic processes and
finally in weight loss of the affected animal.
Experiments conducted with a temporarily
insufficient food supply allow for a simulta-
neous estimation of the half saturation con-
stant Fh which quantifies this effect. How-
ever, it is difficult to fully control food sup-
ply in an experiment. We here show that
it is possible to estimate Fh even with only
rough knowledge of the course of food sup-
ply by estimating a food supply function, or
to be more exact, its parameters at the same
time. On the one hand we can optimize the
paramters in an explicit expression, e.g.

F (t) = F0e
−(t/t1)

p1 (1− e−(t/t2)
p2 )

or those of the food dynamic given in the
second section. The scenario described with
the above equation is that food is given
only once in the beginning of the experi-
ment, but it becomes accessible after mi-
crobial turnover and is depleted after some
time.



Figure 2: Weight structured population
densities taking into account temperature

dependent growth and dynamic food supply,
here the optimized parameter set

Figure 2 shows the close match between
simulation results and virtual data. Note the
differences in the underlying dynamic com-
pared to figure 1. The population density
shifts to smaller weights in the first moni-
toring, displaying an overall loss in weight,
increasing weight around the second moni-
toring, just to shift back to smaller weights
until the last monitoring. The efficiency of
the model parameterized via optimization is
equal to that parameterized with given val-
ues (0.9947). Given and found parameters
vary less than in the previous example.

Fh p1 p2 t1 t2
direct 4.7 20 25.0 82 98
optimized 4.27 18.4 25.1 84.0 97.9
std. dev. 0.4 0.12 0.83 0.07 0.29

We suppose that the crucial difference
between the two optimizations discussed so
far is the range of possible values of the
environmental component that are adopted
during the experiments. The course of the
food supply applied here also belongs to
the experiment to be described below, how-
ever this course comprises ultimate maxi-
mum and minimum and is therefore more
suitable for optimization.

4.3 Process analysis

What remained quite unlifelike until now is
that no mortality was taken into account.
Mortality might depend on the animal’s age
and on environmental factors as tempera-
ture and food. Age is unknown for animals
collected from natural environments, and a
time-dependence or a constant value is sup-
posed for mortality. As soon as tempera-

ture and food vary with time and as soon
as they do so in such a way that optimal
conditions for survival are lost, an analysis
of experimental data must include assump-
tions on lethal processes. We here created
a virtual experiment with constant, food de-
pendent and temperature dependent mortal-
ity and tried to find back their proportions.
We supposed that all parameters discussed
so far are given and only mortality is to be
explained. We supposed an inverse O’Neill-
like mortality µT (1 − Φ(T )) with mortality
rate µT and a parameterization identical to
the one included in growth and a food de-
pendency of µF

Fµ

Fµ+F with mortality rate µF

and a shape parameter Fµ. Together with a
constant mortality of µ0 we have a survival
rate σ of

σ = (1−µ0)(1−µT (1−Φ(T )))(1−µF
Fµ

Fµ + F
)

such that

p−(F, T ) = (1− σ)n(w, t).

Results differed depending on whether to
suppose knowledge of single process shape
parameters (Fµ, Topt and q10), or not, the
latter is called ’all’ in the table below, the
former is called ’rates only’.

µ0 µF µT

direct 0.0050 0.0010 0.0010
rates only 0.0040 0.0012 0.0041
all 0.0045 0.0000 0.0045

Figure 3: Weight structured population
densities taking into account temperature and
food effects, especially on mortality, optimized

parameter set

It was not possible to find back the true
influence of starving related death without
previous knowledge of Fµ, compare an esti-
mation of µF of 0.0000 to 0.0012 while direct
simulation input was 0.0010. Besides, the



rôle of temperature related death was over-
estimated, again we suppose that a lack of
temperature amplitude is one possible rea-
son. A model efficiency of 0.99 was found
and is illustrated in figure 3

4.4 Coupled systems analysis

Year long experiments in nature comprise
monitoring of newborn animals, e.g. unpub-
lished data by Schneider et al. Model equa-
tions then comprise p+(F, T, . . .). Other ex-
periments distinguish between female and
male animals and focus on differing rates for
anabolic and catabolic processes and mor-
tality rates. Any of these modifications re-
sults in multi-experiment analysis. Virtual
tests performed so far show a fairly accept-
able reproduction of the population densities
as long as environmental components were
excluded or were very pronounced. How-
ever, parameter attribution in real life cir-
cumstances is difficult as all possible en-
vironmental components, like temperature
and food supply, will have to be monitored
collaterally.

4.5 Application in real life
experiments

In data so far unpublished Suhling et al. an-
alyzed the influence of increasing temper-
ature as one effect of climate change on
mean weight of G. pulex. They included
four temperature regimes, one being true
weather conditions, the others differed to
this by two, four and six degree Celsius re-
spectively. A single food reservoir was fur-
nished and mean weight was monitored dur-
ing little more than sixty days.

We supposed that all of the processes de-
scribed in the previous subsections are rel-
evant. Differences in dynamic behaviour
between the four regimes would then be
fully explained by temperature dependency
of both anabolic processes and death. As
food stock will be depleted depending on the
rate of anabolic processes we suppose that
food dynamic shape parameters may vary
between the four temperature regimes.

Figure 4: Optimized parameter set for
experimental data with outside temperature

Including all of the processes given in
the previous subsection we found impressive
model efficiencies of 0.98 when optimizing
all parameters for the outside temperature
regime, see figure 4. The overall dynamic of
the measured and modelled population den-
sity is identical and close to what has been
modelled during virtual experiments in sec-
tion 4.3. However, the bigger the tempera-
ture difference to the latter, the smaller the
model efficiency, see figure 5 and the table
below. The series of shrinking, growth and
shrinking is amplified with rising tempera-
ture, and death is rarer than modelled.

+0oC +2oC +4oC +6oC
ME 0.98 0.79 0.687 0.535

Not shown here but even worse are model
efficiencies when only food dynamic parame-
ters are left to be optimized to the tempera-
ture regimes of plus two, four and six degree
Celsius.

We therefore conclude that another tem-
perature dependent process is hidden in the
experiment. Our final clue to this assump-
tion is that even direct simulation of the ex-
perimental set up with the parameters found
for basis temperatures did not show the same
dynamic as revealed by the experiments.



Figure 5: Optimized parameter set for
experimental data with +2oC,+4oC, and +6oC

respectively

5 Conclusion

Combining direct simulation with Comsol
with simple optimization tools in Matlab
helps in research in ecology in two ways. On
the one hand it is an efficient way to analyse
coupled processes found in integral experi-

ments, on the other hand it can guide re-
searchers to design efficient experiments for
single processes in varying contexts.
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