Kinetics and Reactor Modeling of Methanol Synthesis from Synthesis Gas

Hamidreza Bakhtiary

Fatemeh Hayer

Norwegian University of Science and Technology

COMSOL Conference, Hanover

November 6, 2008

History of MeOH synthesis at a glance:

- Started from 1661, developed in 1800s
- *First time commercial production: from wood (1830-1920)*
- 1923: BASF introduced coal based HP MeOH
- Late 1960s: MP & LP processes, Copper based catalyst

Methanol is an important final and intermediate chemical product

Reactions of MeOH Synthesis

- CO+2H2 = CH3OH (DH=-21.66 kcal/mol)
 CO2+3H2 = CH3OH + H2O (DH=-11.83 kcal/mol)
 CO2+H2 = CO + H2O (R.WGS) (DH=+9.84 kcal/mol)
- Both exothermic and exhibit reduction in volume
- Therefore: High P and Low T is in favour of synthesis
- Reactions 1 and 3 are independent and limited by thermodynamic equilibrium

Typical Commercial Catalyst Composition

- *Copper oxide: 60-70%*
- *Zinc oxide: 20-30%*
- *Alumina:5-15%*
- Copper, an extremely selective catalyst, high yield,99.5% of converted CO+CO2 is MeOH
- Shape: Tablet form, cylinders:5.5 into 3.5 mm or 5 into 5 mm
- Reduction:1% H2 in N2 or Methane at max. 230 °C
- Catalyst poisoning: Sulfide and Chlorine

Highlights of MeOH Synthesis

- Exothermic Rection, Heat integration and Recovery are important feature
- Current Technologies: Heat Transfer based:
 - 1. ICI: Quench Reactor
 - 2. Lurgi: Tubular
 - 3. Mitsubishi: Double-Tube Heat Exchange reactor
- Trends in technology improvement: Larger capacity, improved energy efficiency
- Suitable Syngas Technology (Topsøe, Lurgi, Mitsubishi): Two step Reforming, Primary SR plus ATR
- 32 to 44 % of the energy is used for the production of MeOH

Tube cooled: Catalyst bed + heat exchangers in one vessel Relatively lower cat. Vo Better heat recovery 7 commercial units operating now

Fig. 6-3 Methanol synthesis loop – different reactor types

Microstructured reactors, Velocys, Heatric...?

NTNU

Challenges in Conventional MeOH Technology

1. Heat Management,

- Non-isothermal behaviour,
- Trend: leading to different reactor configurations

2. Conversion per pass:

- Higher T, lower Conversion, Nature of the reaction (Eq. Limitation),
- Trend: leading to development of low temp. active catalysts

Project Scope

Offshore conversion of remote gas to methanol

Future Solution for Stranded Gas Fields?

□ NTNU

Comparative study of two reactors

- Non isothermal packed bed reactor
- Micro-Packed Bed Reactor-Heat Exchanger

NTNU

European COMSOL Multiphysics Conference, Hanover, 2008

() SINTEF

Fixed Bed Reactor Model

• Objectives of model development:

- 1. To develop a model and predict the experimental data on a laboratory scale fixed bed reactor for methanol synthesis
- Comparative performance study of fixed bed reactor and a microstructured reactor via developed models (next phase of the project)
- 3. COMSOL Multiphysics software package (MATLAB based) was used in this study

Fixed Bed Reactor Model

- Model assumptions:
- 1. Pseudo-homogeneous,

Cg = Cs and Tg = Ts

No T and C gradinet within particles

2. 2D model: no radial velocity is considered, but dispersion and heat transfer exists in both radial and axial directions

Kinetic Rate Equations

- $CO2 + 3H2 \leftrightarrow CH3OH + H2O \qquad (\Delta H = -11.83 \text{ kcal/mol}) \qquad (2)$
- $CO2 + H2 \leftrightarrow CO + H2O$ ($\Delta H = +9.84 \text{ kcal/mol}$) (3)

$$r_{MeOH} = \frac{k_{d} \cdot p_{CO_{2}} \cdot p_{H_{2}} \cdot \left(\left(1 - \left(p_{H_{2}O} \cdot p_{CH_{3}OH} / \left(p_{H_{2}}\right)^{3} \cdot p_{CO_{2}} \cdot K_{eq1}\right)\right) \right)}{\left(\left(1 + k_{c} \cdot p_{H_{2}O} / p_{H_{2}} + \sqrt{(p_{H_{2}}) \cdot k_{a}} + k_{b} \cdot p_{H_{2}O}\right)^{3} \right)}$$

$$r_{RWGS} = \frac{k_e \cdot p_{CO_2} \cdot \left(1 - K_{eq2} \cdot p_{H_2O} \cdot p_{CO_2} \cdot p_{H_2}\right)}{\left(1 + k_c \cdot p_{H_2O} / p_{H_2} + \sqrt{(p_{H_2}) \cdot k_a} + k_b \cdot p_{H_2O}\right)}$$

NTNU

Chemical Reaction Engineering Lab

Mole fraction pofiles of reactants and products from CREL, Adiabatic Plug Flow Reactor

Kinetic model is in a good agreement with literature, Jakobsen et al., Computers and Chem. Eng., 26, 2002

NTNU

Governing Equations, Boundary Conditions

• Mass Balance $\frac{\partial c_i}{\partial t} + D_{er} \left(\frac{\partial^2 C_i}{\partial r^2} + \frac{1}{2} \cdot \frac{\partial C_i}{\partial r} \right) + D_{ea} \frac{\partial^2 C_i}{\partial z^2} = u_s \cdot \frac{\partial C_i}{\partial z} - \rho_B \cdot r_i$ • Energy Balance: $\frac{\partial T}{\partial t} + \lambda_{er} \left(\frac{\partial^2 T}{\partial r^2} + \frac{1}{2} \cdot \frac{\partial T}{\partial r} \right) + \lambda_{ea} \frac{\partial^2 T}{\partial z^2} = u_s \cdot \rho_f \cdot c_p \frac{\partial T}{\partial z} - \rho_B \cdot (\Delta H) \cdot r_i$ • Initial Conditions: $C_i = C_0 \qquad \text{at all r and z}$

 $T = T_0$

• Boundary Conditions (t>0):

$$\frac{\partial C}{\partial r} = 0 \qquad \text{at } r = 0 \quad \text{and } r = R \text{ all } z \qquad \begin{array}{l} C_i = C_0 \\ T = T_0 \end{array} \qquad \text{at } z = 0 \quad 0 \le r \le R \\ \hline T = T_0 \end{array}$$

$$\frac{\partial T}{\partial z} = -\frac{U}{\lambda_{er}} \left(T - T_a\right) \qquad \text{at } r = R \text{ all } z \qquad \begin{array}{l} \frac{\partial C}{\partial z} = \frac{\partial T}{\partial z} = 0 \\ \hline \frac{\partial C}{\partial z} = \frac{\partial T}{\partial z} = 0 \end{array} \qquad \text{at } z = L \quad 0 \le r \le R \end{array}$$

Fixed wall T, convective flux at the exit, constant velocity along the bed (laminar)

SINTEF

NTNU

Model Coefficients, Reactor & Catalyst Data

Reactor& Catalyst Data:		Synthesis gas composition (vol%):		
		H2	0.65	
Inner Tube Diameter (m)	0.00914	СО	0.25	
Outer Tube Diameter (m)	0.0127	CO2	0.05	
		N2	0.05	
Tube Length (m)	0.03			
Shell Temperature (K)	493 - 513	Model Coefficients		
Catalyst System	CuO/ZnO/Al ₂ O ₃	Axial Dispersion	Wen & Fan, 1975	
Pellet size	50-200 µm	Radial Dispersion	De Ligny et al., 1970	
Catalyst Density	1250 Kg m ⁻³	Axial Gas Thermal Conductivity	Yagi et al., 1960	
Bulk Void Fraction	0.5	Radial Gas Thermal Conductivity	Froment & Bischoff, 1979	
		Overall Heat Coefficient	Froment & Bischoff, 197	

DNTNU

P=80 bars, syngas flow= 250 nml/min

The wall temp. strongly affects bed temperature distribution

P=80 bars, T max= 255 C

□ NTNU

The non-isothermal behaviour in Fixed Bed Reactor for exothermic reaction

P=80 bars, T max= 255 C, Flow= 250 nml/min

NTNU

- Hot spot moves down the reactor length with increasing the flow
- Temperature distribution heavily affects the reactor performance

NTNU

Conclusion

- > The kinetic model is in a good agreement with similar published work2
- The 2D model considers both axial and radial dispersion of heat and mass and consequently provides a good tool for lab sacle studies
- With increasing gas velocity, CO conversion decreases and hot spot moves dwon the reactor
- The well knwon thermal behaviuor of exothermic reactions in fixed bed reactors could be predicted by this model
- Based on the knowledge gained in this work, the next step of this research is to build up a model for methanol synthesis in a microstructured heat exchanger - packed bed reactor

Thanks for your kind attention!

