

Simulating Surface Plasmons at Metal Surfaces and its Application in Optoelectronic Devices with COMSOL Multiphysics

Leiming Wang, Senior Researcher Konica Minolta Laboratory USA

Giving Shape to Ideas

© KONICA MINOLTA

Outline

Introduction

• Surface plasmon polaritons (SPP)

□ Simulation of SPP using COMSOL Wave Optics

- Prism coupling
- Scattering configuration (grating coupling)
- Explore SPP properties via scattering simulation

□ Application examples

- Plasmon energy loss in OLED
- Surface plasmon-enhanced fluorescence spectroscopy (SPFS)

Surface plasmon polaritons - a guided surface wave

 \Box Transverse magnetic (TM, or *p*-polarized) mode – H_z, E_x, E_y

 \Box "Phase-matching" (ΔK) condition for SPP excitation

SPP excitation – prism coupling

£

Θ

(1) Full-field simulation w/o the slit to generate incident field for step 2 ($\theta = 30^{\circ}$).

(2) Scattered-field simulation with the output from step 1 as the incident field.

Scattering configuration enables the local excitation of SPP and opens the way for further study on its wave properties such as attenuation, interference, focusing, etc.

SPP excitation – grating coupling

Finite grating is a special case of scattering configuration, with resonance:

 $k_0 \sin(\theta) \pm m \cdot (2\pi/p) = k_{spp}$

 $\Theta = 0^{\circ}$

 $\Theta = 16.5^{\circ}$ (resonance)

 $\Theta = 30^{\circ}$

SPPs at the two interfaces of thin metal film interact to form two coupled SPP modes:

• Anti-symmetric bound mode (a_b): strong confinement, strong damping (short range SPP).

• Symmetric bound mode (s_b): weak confinement, small damping (long range SPP).

Adiabatic focusing of SPP by thin wedge

The dispersion with respect to film thickness leads to adiabatic focusing of the thin film coupled SPP in a wedge structure.

Wang, et al, PHYSICAL REVIEW B 86, 165408 (2012)

SPP focusing lens

Konica Minolta OLED lighting

Typical power distribution spectrum of an OLED viewed in the k-space*

*Reineke et al., Rev. Mod. Phys. 85, 1245–1293 (2013)

Reducing plasmon loss in OLED by nanostructured cathode

"Let there be light: a brighter future for OLED", **IEEE Spectrum**, September 2016

Wang, et al, COMSOL Conference 2015

Surface plasmon-enhanced bio-sensing

Trade-off btw SP-enhanced excitation and -quenched emission in SPFS

Excitation field enhancement

SP quenching of fluorescence emission

Giving Shape to Ideas

KONICA MINOLTA

Leiming.wang@hl.konicaminolta.us

