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Introduction 

 
Electrochemical Machining (ECM) is a non-

conventional machining technology which allows for 

surface structuring and shaping of metallic workpieces 

with high accuracy and surface quality. The machining 

principle of ECM is electrolysis. Hence, the 

mechanical properties of the workpiece material do 

not directly influence the machining process. Thus, 

even very hard materials can be machined with nearly 

no wear of the tool electrode. The major challenge in 

applying ECM is the process design. In today’s 

practice, this is a time-consuming and cost-intensive 

procedure. 

However, the efficiency of process design may be 

enhanced by simulation-based optimization. The 

objective function can be defined on the basis of the 

simulated workpiece shape. Then, for each evaluation 

of the objective function the resulting workpiece shape 

needs to be simulated. From this follows that there is 

a need for efficient ECM simulation models with low 

computational costs. 

In a previous work [1] an ECM simulation model was 

developed, which encompassed the physical 

phenomena electrodynamics, fluid dynamics, 

thermodynamics, the formation and transport of 

hydrogen bubbles as well as geometry deformation. 

Fluid dynamics was regarded as a compressible two-

phase potential flow. The pressure field was calculated 

based on Bernoulli’s equation. The pressure drop was 

a model input parameter. The local total pressure was 

computed based on this input parameter.  

In the present study the multiphysical model of the 

previous work [1] is revisited and extended. In 

particular, the submodel for computing the total 

pressure is replaced by a new submodel incorporating 

the approximation of the pressure drop for 2D ECM 

simulations. This submodel is built up orientated on a 

1D flow model of Kozak [2]. The total pressure is 

regarded as a field variable that is calculated using a 

partial differential equation. In this equation the drop 

in total pressure is incorporated as a source term. The 

source term is defined as a function of the local 

Reynolds number, the local working distance between 

tool and workpiece and the average density and 

velocity in the flow cross-section. In this connection 

the computation of the local working distance and the 

averaging of local quantities across the flow cross-

section is conducted by using several additional linear 

partial differential equations. 

 

Theory 
 

The approach for reducing the numerical effort of 

ECM simulations incorporating fluid dynamics 

regarded in this work is handling the fluid flow as a 

potential flow. This means that the fluid is regarded as 

inviscid and the flow field as irrotational. The two-

phase flow field in the working gap is approximated 

by the following set of equations. 

 
𝜕𝜚

𝜕𝑡
+ ∇ ∙ (𝜚∇𝜙) = 0            (1) 

 

𝜚 ≔ 𝜙El 𝜚El + 𝜙H2 𝜚H2(𝑝, 𝑇ref)                 (2) 

                                                                             
𝜕𝜙H2 𝜚H2

𝜕𝑡
+ ∇ ∙ (𝜙H2 𝜚H2∇𝜙) = ∇ ∙ (𝜈K 𝜚H2 ∇𝜙H2) (3)                                                                             

 
�̅�

2
 |∇𝜙|

2
+ 𝑝 = 𝑝tot           (4)                                                                             

 

Equation (1) originates from the continuity equation 

and models the flow field with the flow potential 𝜙 

and flow velocity �⃗� = ∇𝜙. Moreover, equation (2) 

defines the density 𝜚 of the bubbly flow, where  

𝜚El and 𝜚H2(𝑝, 𝑇ref) are the density of pure electrolyte 

solution and the barotropic density of hydrogen at a 

reference temperature 𝑇ref, respectively. Equation (3) 

models advective and pseudo turbulent hydrogen mass 

transport. Here, 𝜙H2 is the volume fraction of 

hydrogen. The volume fraction of electrolyte is 

calculated according to 𝜙El = 1 − 𝜙H2. The pseudo 

turbulent diffusion coefficient is set to  

𝜈K = 10−6 m²/s, which is based on a comparison of 

the potential flow model with a 𝑘-𝜀 turbulent bubbly 

flow model [3]. The static pressure 𝑝 required for 

hydrogen density calculation is computed with 

Bernoulli’s equation (4). In this equation the bars 

denote the averaging over the flow cross-section. 

Except for this averaging, up to this point, the flow 

model is identical with the one used in the previous 

work [1] where the total pressure 𝑝tot was calculated 

based on the streamline length. In contrast, in the 
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present work the goal is to model 𝑝tot according to the 

1D model of Kozak [2] using 

 

𝑝in − 𝑝out ≔ 𝜆(𝑅𝑒) 
𝐿

2 𝑆
 
𝜚

2
 𝑢²                    (5) 

  

𝜆(𝑅𝑒) ≔ {
 96 𝑅𝑒⁄                if  𝑅𝑒 < 2000

0.316 𝑅𝑒1/4⁄     else                  
        (6) 

 

with the width 𝑆 and length 𝐿 of the working gap as 

well as the Reynolds number 𝑅𝑒. Since these three 

quantities vary within the fluid domain, equation (5) is 

transformed into a differential form. 

 
d𝑝tot

d𝑙r
≔ 𝜆(𝑅𝑒) 

1

2 𝑆
 
�̅�

2
 �̅�²                    (7) 

 

Again, the bars denote the averaging over the flow 

cross-section. The Reynolds number is given by 

 

𝑅𝑒 =  
2 𝑆 �̅� 𝑢

𝜇
                              (8) 

 

where the dynamic viscosity is defined as constant. In 

order to compute the width of the working gap and the 

required averages, the flow cross-section is defined by 

a normed auxiliary vector field 𝑣 ⊥. In 2D the 

components of the flow field �⃗�  can be used for this. 

 

𝑣 ⊥ ≔
1

|�⃗⃗� |
(
−𝑢𝑦

𝑢𝑥
)    or    𝑣 ⊥ ≔

1

|�⃗⃗� |
(

𝑢𝑦

−𝑢𝑥
)         (9) 

 

In the following, a configuration is regarded for which 

𝑣 ⊥ = �⃗�  on the anode surface and 𝑣 ⊥ = −�⃗�  on the 

cathode surface. Here, the normal vector �⃗�  points into 

the fluid domain.  

In what follows, the width of the working gap 𝑆, also 

referred to as working distance, is defined as the length 

of the streamlines of 𝑣 ⊥ connecting anode and cathode. 

In figure 1 these streamlines are dashed and colored in 

red. 

 

 
Figure 1. Working distance 𝑆 = 𝑆A + 𝑆C in an arbitrary 

point P as the length of the corresponding streamline of the 

auxiliary vector field 𝑣 ⊥ 

In the figure the partial lengths 𝑆A and 𝑆C are defined. 

The sum of both yields the working distance 𝑆. 

 

𝑆 = 𝑆A + 𝑆C                       (10)                                                                             

 

In the following, equations for the calculation of 𝑆A 

and 𝑆C are derived. Figure 1 suggests that 𝑆A is defined 

for any point P in the fluid domain. That is, 𝑆A is a 

scalar field. Its gradient ∇𝑆A shall amount 1 in the 

direction of 𝑣 ⊥. This means that for these vectors 

𝑣 ⊥ ∙ ∇𝑆A = 1  must hold. The addition of a diffusion 

term yields the following partial differential equation. 

 

𝑣 ⊥ ∙ ∇𝑆A − ∇ ∙ (𝑠D ∇𝑆A) = 1              (11) 

 

The diffusion coefficient 𝑠D should be chosen large 

enough to provide numerical stability but as small as 

possible to avoid undesirable spatial averaging. In this 

work 𝑠D is set to half the local mesh size ℎ/2. On the 

right hand side 1 acts as a source term that controls the 

accumulation of length. Equation (11) is solved using 

a Dirichlet boundary condition on the anode surface 

with 𝑆A = 0. At the remaining boundaries of the fluid 

domain the diffusive flux is set to zero. Then, 𝑆A can 

be interpreted as the distance from the anode surface 

along 𝑣 ⊥. Similarly, the distance 𝑆C from the cathode 

surface along −𝑣 ⊥ can be computed as follows. 

 

− 𝑣 ⊥ ∙ ∇𝑆C − ∇ ∙ (𝑠D ∇𝑆C) = 1              (12) 

 

Equation (12) is solved using the Dirichlet boundary 

condition 𝑆C = 0 at the cathode surface.  

The source term 1 on the right hand side of 

equation (11) can be interpreted as the differential 

change of 𝑆A along the direction 𝑣 ⊥. Disregarding the 

diffusion term, solving equation (11) is similar to 

calculating line integrals of the source term 1 along 𝑣 ⊥ 

from the anode surface to the regarded position. This 

motivates to calculate the average of quantities in the 

flow cross-section with a similar approach. For some 

quantity 𝑋 the average �̅� over the flow cross-section is 

defined according to  

 

�̅� ≔
𝑋A+𝑋C

𝑆
                       (13)                                                                             

 

𝑣 ⊥ ∙ ∇𝑋A − ∇ ∙ (𝑠D ∇𝑋A) = 𝑋                (14) 

 

− 𝑣 ⊥ ∙ ∇𝑋C − ∇ ∙ (𝑠D ∇𝑋C) = 𝑋.              (15) 

 
Again, the proper homogeneous Dirichlet boundary 

conditions are defined at the surfaces of anode and 

cathode, respectively. This averaging is conducted for 

the flow velocity magnitude 𝑢 = √∇𝜙 ∙ ∇𝜙 and the 

density 𝜚 to compute the local Reynolds number and 
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the term d𝑝tot d𝑙r⁄  from equation (7). Subsequently, 

the latter term is used as a source term to calculate the 

local total pressure by 

 

−(
�⃗⃗� 

|�⃗⃗� |
) ∙ ∇𝑝tot − ∇ ∙ (𝑠D ∇𝑝tot) =

d𝑝tot

d𝑙r
         (16) 

 

with a Dirichlet boundary condition 𝑝tot = 𝑝out at the 

outlet boundary. The reader should note that in this 

definition 𝑝out is the total pressure at the outlet, not the 

static pressure. Equation (16) is again motivated by the 

idea that this is similar to the calculation of line 

integrals of the right hand side, along the streamlines 

of −�⃗�  from the outlet boundary to the regarded 

position. 

 

Model Description 
 

The design concept of the pulsed electrochemical 

machining process (PECM) regarded in this work is 

shown in figure 2. It is equivalent to the one regarded 

in the previous work [1]. 

 

 
Figure 2. Design concept for machining internal precision 

geometries with pulsed electrochemical machining [1] 
 

This machining process is axisymmetric. The 

workpiece has a predrilled bore with a diameter of 

25 mm. The edge of the bore features a chamfer of 

3.5 mm × 45°. The maximum diameter of the cathode 

disk with the functional surface is ca. 31.6 mm. 

Electrolyte flushing is performed from below and 

during machining the cathode unit is moved 

downwards with a constant velocity of 1 mm/min. The 

2D axisymmetric model geometry derived from this 

design concept is shown in figure 3. Domain I 

represents the two-phase fluid of the bubbly flow of 

aqueous sodium nitrate solution and gaseous 

hydrogen. Domain II is the workpiece and Domain III 

the cathode. The workpiece is made from a powder-

metallurgical steel referred to as SAM 10 and the 

cathode material is stainless steel 1.4301. 

 
Figure 3. 2D axisymmetric geometry of the model con-

taining the numbering of domains and boundaries at initial 

time t = 0 s [1] 
 

Domains IV and V represent a clamping element and 

an electrical insulation element, which are both made 

from POM. Domain VI is the workpiece clamping 

element made from 1.4301. The respective material 

properties are listed in table 1. 

 
Table 1: Material properties 

 

Domain 
𝜚 

[kg/m³] 
𝜎  

[S/m] 
𝜆 

[W/(m·K)] 

𝑐𝑝 

[J/(kg·K)] 

I 𝜚(𝜙El, 𝑇ref) 𝜎eff(𝜙El, 𝑇) 0.599 3877 

II 7600 1.69 ∙ 106 21.5 410 

III, VI 7900 1.37 ∙ 106 15 500 

IV, V 1410 10−10 0.31 1500 

 

Here, 𝜆 is the thermal conductivity, 𝑐𝑝 the heat 

capacity and 𝜎 the electrical conductivity. The 

electrical conductivity of the fluid is defined as a 

function of the electrolyte volume fraction and the 

temperature. [1] 

 

𝜎eff(𝜙El, 𝑇) ∶= (𝐴 (
𝑇

1K
− 273.15) + 𝐵)  ∙ 𝜙

El

3

2    (17) 

 

The parameters were set to 𝐴 = 1.646 mS/cm and 

𝐵 = 39.796 mS/cm. According to this equation the 

electrical conductivity of the fluid increases linearly 

with temperature and nonlinearly with electrolyte 

volume fraction. The reference temperature for the 

hydrogen density calculation was set to  

𝑇ref = 20 °C. Furthermore, for the calculation of the 

Reynolds number the viscosity of the fluid was 

defined to amount 𝜇 = 1.042 mPa⋅s.  

In the regarded pulsed electrochemical machining 

process current pulses are applied. The cathode unit is 

moved towards the workpiece with a constant feed 

velocity. This is illustrated in figure 4.  
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Figure 4. Electrical current pulses 𝐼(𝑡) and cathode feeding 

path 𝑠(𝑡) in pulsed electrochemical machining (PECM) 

without cathode oscillation [4] 

 

Schaarschmidt et al. [5] presented a comprehensive 

modelling method for PECM in which the current 

pulses are simulated in a multiscale approach. This is 

even applicable to PECM processes with cathode 

oscillation. However, for the sake of comparability 

with the previous work [1] electrodynamics is 

modeled using a pseudo direct current approach. This 

means that temporally constant boundary conditions 

are applied. The simulated electric current 𝐼 

corresponds to the real electric current during pulse-on 

time, as depicted in figure 4. In what follows, the hat 

above the symbol denotes pseudo direct current related 

quantities. The pulsation of the electric current is 

characterized by the duty cycle 𝑐𝐼. 

 

𝑐𝐼 = 𝑡on ·  𝑓P                             (18) 

 

Here, 𝑡on is the pulse-on time and 𝑓P is the pulse 

frequency. The process parameters regarded in this 

work are summarized in table 2. For the purpose of 

comparability the process parameter values equal the 

ones used in the previous work [1]. 

 
Table 2: Process parameters, equal to previous work [1] 

 

Parameter Symbol Value 

Feed velocity 𝑣f 1 mm/min 

Electric process voltage 

during pulse-on time 
𝑈 14 V 

Duty cycle 𝑐𝐼 0.8 

Electrolyte volume flow 

rate 
�̇�El 8 l/min 

Absolute total pressure at 
flow outlet 

𝑝out 5.5 bar 

Ambient temperature 𝑇A 20 °C 

 

The numerical model was built up in COMSOL 

Multiphysics using the Physics Interfaces Electric 

Currents, Heat Transfer in Fluids, General Form PDE, 

Coefficient Form PDE and Deformed Geometry. The 

boundary conditions of electrodynamics are given in 

table 3. In the following, the numbering of domains 

and boundaries refers to the definition from figure 3. 

 
Table 3: Electrodynamical boundary conditions  

 

Label Boundary Details 

Axial Symmetry 1 – 3 – 

Electric Insulation 5 – 7, 9, 10 �⃗� ∙ 𝐽 ̂ = 0 

Ground 4 �̂� = 0 

Electric Potential 8.1, 8.2 
�̂� = 𝑈 − 𝑈O 
𝑈O = 6 V 

 

Here, 𝐽 ̂ is the electric current density during pulse-on 

time, �̂� is the respective electric potential, and 𝑈O is 

the electrochemical overpotential that occurs at the 

electrolyte-electrode interfaces. In this work 𝑈O is 

considered to be constant and constantly partitioned on 

both electrode-electrolyte interfaces. Hence, this 

potential drop can be taken in account by subtraction 

from the electric process voltage. The value 𝑈O = 6 V 

was chosen based on experimental results. The 

boundary conditions of thermodynamics are defined in 

table 4. 

 
Table 4: Thermodynamical boundary conditions  

 

Label Boundary Details 

Axial Symmetry 1 – 3 – 

Thermal Insulation 5, 7, 9 �⃗� ∙ 𝑞 = 0 

Temperature 4, 8.1, 8.2, 10 𝑇 = 𝑇A 

Outflow 6 �⃗� ∙ 𝑞 = 0 

Boundary Heat 
Source Anode 

17.1, 17.2 𝑄b = (𝑈O − 1 V) |𝐽𝑛| 

Boundary Heat 

Source Cathode 
16 𝑄b = 1 V  |𝐽𝑛| 

 

Here, 𝑞  is the heat flux density, 𝑇 the temperature, 𝑄b 

the boundary heat source and 𝐽𝑛 is the normal electric 

current density. According to the table the cathodic 

overpotential is considered to amount 1 V and the 

anodic overpotential 𝑈O − 1 V. Furthermore, Joule 

heating is regarded in both fluid and solid domains. 

Fluid dynamics is modeled according to the 

derivations of the previous chapter. The subjects and 

solution variables of the equations of fluid dynamics 

are summarized in table 5. 
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Table 5: Subjects and solution variables of fluid dynamics 

 

Subject Solution variable Equation 

Mass conservation 𝜙 1 

Density of the dispersion 𝜚 2 

Hydrogen transport 𝜙H2 3 

Static pressure 𝑝 4 

Friction factor 𝜆 6 

Pressure drop d𝑝tot d𝑙r⁄  7 

Reynolds number 𝑅𝑒 8 

Auxiliary vector field 𝑣 ⊥ 9 

Working distance 𝑆 (𝑆A, 𝑆C) 10 – 12 

Cross-section averages 
�̅� (𝑢A, 𝑢C) &  

�̅� (𝜚A, 𝜚C) 
13 – 15 

Total pressure 𝑝tot 16 

 

At the cathode surface hydrogen production ΦH2,n is  

modeled according to Faraday’s law 

 

ΦH2,n = −
𝑀H2

2 𝐹
𝐽𝑛                         (19) 

 

where 𝑀H2 is the molar mass of hydrogen and 𝐹 is 

Faraday’s constant. 

The reader should note that in the regarded case of an 

2D axisymmetric model, the proper equation form in 

cylindrical coordinates has to be applied. With 

equations describing the conservation of 

thermodynamical quantities this leads to additional 

source terms. However, with the equations for the 

working distance this is not the case, since 1D 

geometric quantities are described. Here, the 2D and 

2D axisymmetric equation forms equal. Moreover, in 

this work the cross-section averages were treated in 

the same way. This means that these can rather be 

interpreted as line averages. 

Transient material removal and the tool feed 

movement were modeled using Deformed Geometry. 

The Free Deformation domain condition is defined in 

domains I – V and Fixed Mesh is defined in 

domain VI. The Boundary conditions of geometry 

deformation are listed in table 6. 

 
Table 6: Geometry deformation boundary conditions  

 
Label Boundary Details 

Prescribed Mesh 

Displacement rz 

4 – 6, 8.2, 

17.1, 18 
𝑑𝑟 = 0  

𝑑𝑧 = 0 

Prescribed Mesh 

Displacement r 
1 – 3, 13, 15 𝑑𝑟 = 0 

Prescribed Mesh 

Displacement z 
9, 10 𝑑𝑧 = 0 

Prescribed Mesh 

Displacement Tool 

2, 11, 12, 14, 

16 
𝑑𝑟 = 0 

𝑑𝑧 = −𝑣f  𝑡 

Prescribed Mesh 
Velocity Removal 

17.2 
𝑣𝑟 = 𝑛𝑟  �̅�a,c𝐼

(𝐽𝑛)   

𝑣𝑧 = 𝑛𝑧   �̅�a,c𝐼
(𝐽𝑛) 

 

Here, 𝑑𝑟, 𝑑𝑧 and 𝑣𝑟 , 𝑣𝑧 are the components of the 

displacement vector and the displacement velocity, 

respectively. The time-averaged material removal 

velocity �̅�a,c𝐼
(𝐽𝑛)  was obtained from experimental 

results and is given by 

 

 �̅�𝑎,𝑐𝐼
(𝐽𝑛) = {

0                       if  𝐽𝑛 < 11
A

cm2

𝐶 𝐽𝑛 − 𝐷         else                  
      (20) 

 

where for the corresponding constants the values were 

defined to be 𝐶 = 0.0123 (cm²/A)⋅(mm/min) and  
𝐷 = 0.1353 mm/min. 

 

Simulation Results 
 

The pulsed electrochemical machining process was 

simulated for a maximum process time of 𝑡 = 250 s. 

In what follows, crucial simulation results at  

𝑡 = 250 s are presented. Figure 5 shows streamlines 

of the flow field. The streamline color represents the 

flow velocity magnitude. 

 

 
Figure 5. Streamlines of the flow field �⃗�  at 𝑡 = 250 s, color 

represents flow velocity magnitude 

 

The electrolyte enters the fluid domain at the lower 

model boundary as depicted by arrows on the 

streamlines. At the entrance of the working gap the 

flow velocity increases significantly, which is due to 

the decreased area of the flow cross-section. In the 

working gap the flow velocity slightly declines with 

increasing radius 𝑟 since the area of the flow cross-

section increases. It decreases further in the lateral 

working gap. After exiting the working gap the fluid 

flows off well-ordered and uniformly distributed on 

the flow cross-section. 

The working distance 𝑆 is shown in figure 6 with a 

logarithmic scale. Furthermore, streamlines of the 

auxiliary vector field 𝑣 ⊥ are plotted. 
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Figure 6. Working distance 𝑆 at 𝑡 = 250 s, streamlines 

represent auxiliary vector field 𝑣 ⊥ 

 

In the developed model these lines represent flow 

cross-sections. In the front working gap 𝑆 amounts 

65 µm ± 2 µm which is in agreement with 65 µm. 

The minimum values of 𝑆 are found at the transition to 

the lateral working gap and amount 58 µm ± 2 µm. 

This is also in agreement with the actual geometric 

dimension of ca. 58 µm. Furthermore, it can be found 

that the values on and in the immediate vicinity of the 

boundaries are ca. 5 % lower than the values in the 

bulk of the nearby fluid domain. This may be due to 

the choice of boundary conditions. 

In figure 7 a comparison of the flow velocity 

magnitude 𝑢 = |�⃗� | and the cross-sectional average �̅� 

is shown. 

 

 
Figure 7. Comparison of the flow velocity magnitude 𝑢 

(left) and the cross-sectional average �̅� (right) at 𝑡 = 250 s 

 

In the figure on the left it can be seen that the 

maximum velocity magnitude occurs at the lower edge 

of the cathode. There, the velocity distribution across 

the flow cross-section is non-uniform. In the figure on 

the right the cross-sectional velocity average 

calculated with equations (13) to (15) is shown. 

Obviously, the distribution of �̅� across the flow cross-

section defined by 𝑣 ⊥ is approximately uniform.  

The local Reynolds number 𝑅𝑒 is plotted in Figure 8. 

The scale is restricted to range of 2600 to 4400. In 

some parts of the fluid domain significantly higher 

values are achieved. 

 

 
Figure 8. Local Reynolds number 𝑅𝑒 at 𝑡 = 250 s 

 

However, these values have only marginal influence 

on the pressure drop calculation due to the 

corresponding high 𝑆 and low 𝑢, respectively. At the 

entrance of the working gap the local Reynolds 

number amounts ca. 3400. Due to the increasing 

radius and cross-sectional area, the Reynolds number 

drops along the working gap to approximately 3750 in 

the bulk of the fluid. In the upper part of figure 9 the 

calculated static pressure 𝑝 is shown for the presented 

potential flow model. Furthermore, for the same 

geometry the result of a stationary simulation with the 

turbulent two-phase bubbly flow model presented in a 

previous work [3] is shown in the lower figure. 

 

 
Figure 9. Static pressure 𝑝 at 𝑡 = 250 s (above) and static 

pressure for the simulated geometry at 𝑡 = 250 s computed 

with the turbulent two-phase bubbly flow model presented 

by Hackert-Oschätzchen [3] (below) 

Potential flow model 

Turbulent flow model 
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In the chamber below the cathode, due to the low flow 

velocity the static pressure is almost equal to the total 

pressure at the fluid inlet. In the case of the potential 

flow model this amounts 8.6 bar. At the entrance of 

the working gap 𝑝 decreases significantly, which can 

be traced back to the increased flow velocity. Along 

the working gap 𝑝 decreases further which is due to 

the drop in total pressure. The minimum of the static 

pressure of 2.5 bar occurs at the lower edge of the 

cathode in the area of the flow velocity maximum. 

While exiting the lateral working gap 𝑝 increases due 

to the decreasing flow velocity and approaches the 

value of the total pressure at the outlet boundary. The 

overall qualitative agreement of both models is well. 

However, the simulated pressure drops differ. For the 

potential flow model the simulated pressure drop 

along the working gap amounts 3.13 bar. The 

simulation with the turbulent flow model predicts a 

higher pressure drop of 4 bar. The difference of the 

pressure of the potential flow model from the turbulent 

flow model is shown in figure 10. 

 

 
Figure 10. Difference of pressure simulated with the 

potential flow model from the turbulent flow model 

 

Inside the front working gap the difference is almost 

constant. The differences between the models arise 

mainly at the entrance of the working gap and the 

lower edge of the cathode, which are marked in the 

figure. These additional pressure drops are due to the 

certain geometrical conditions and are not 

encompassed by the presented potential flow model. 

 

Conclusions 
 

A two-phase potential flow model for the 

approximation of the flow field in ECM was 

presented. In this work, for the potential flow model a 

new submodel for the approximation of the pressure 

drop was developed. The updated model is able to 

describe the influence of changes in volume flow rate 

and geometry on the pressure field and thus on the 

hydrogen volume fraction, the effective electrical 

conductivity, and the material removal, respectively. 

Despite the use of several additional partial differential 

equations, the numerical effort is significantly lower 

than with turbulent flow models. By the comparison 

with the results from a turbulent flow model it could 

be shown that the overall qualitative agreement of both 

models is high. However, the pressure drop predicted 

by the developed submodel is ca. 22 % lower. This 

could be traced back to the fact that in the turbulent 

flow at the entrance and exit of the working gap 

additional pressure drops occur. This may be 

overcome by an adaption of the pressure drop source 

term in the developed submodel for pressure drop 

calculation. Due to the model assumptions of the 

potential flow model complex flow structures, like 

eddies and flow detachments cannot be depicted. 

Furthermore, the no-slip boundary condition is not 

satisfied at the walls. Hence, the presented model can 

be regarded as a computationally efficient tool for 

process design in ECM. 
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