

Finite Element Method based

Investigation of IPMSM Losses

Martin Schmidtner,

Prof. Dr. -Ing. Carsten Markgraf,

Prof. Dr. –Ing. Alexander Frey

Agenda:

- **≻**Introduction
- ➤ Motor Concept
- **≻**Theory
- ➤ Winding Losses
- ➤ Iron Losses

Introduction: The Project

Formula Student:

The Competition challenges teams of university students to conceive, design, fabricate, develop and compete with small formula style race cars. (rules Formula Student)

Introduction: Topic

Development of a <u>permanent excited synchronous motor</u> for a four wheel drived FSE-vehicle:

- electromagnetic field calculation
- mechanical design
- thermal behaviour
- building and testing

Introduction: Topic

Development of a <u>permanent excited synchronous motor</u> for a four wheel drived FSE-vehicle:

- electromagnetic field calculation
- mechanical design
- thermal behaviour
- building and testing

Motor Concept

-	-		$\overline{}$		
N /	α	tor	1	21	ta
LVI	w	w	\mathbf{L}	a	ιa

Motor Type	IPMSM
Connection Type	Star Connection
Stator Slots	12
Pole Pairs	5
Number of Winding	19
Max. Phase Current	70 A
System Voltage DC	600V
Max. Torque	21 Nm
No-Load Base Speed	Ca. 16.000 Nm
Outer Diameter	89,9 mm
Estimated Weight	5 kg
Requested Power Peak	21 kW
Requested Power Nominal	12,5 kW

Theory

➤Winding Losses

- > accrue due to the electrical resistance of the windings
- resistance depends on material property, geometry and temperature

$$R = \frac{L_{coil}}{\sigma_{cop} * A_{coil}} \qquad \qquad R(\vartheta) = R_{ref} * \left[1 + \alpha \left(\vartheta - \vartheta_{ref} \right) \right] \qquad \qquad P_{win} = m * R * I^2$$

>Iron Losses

> separated in hysteresis and eddy current losses

Winding Losses

- 3D transient model
- Reduced by geometric symmetry
- ➤ Nodes:
- ▲ Llectric Currents (ec)
 - De Current Conservation 1
 - Electric Insulation 1
 - Initial Values 1
 - Terminal 1
 - ▶ Fround 1
 - # Equation View

- Heat Transfer in Solids (ht)
 Heat Transfer in Solids 1
 - ▶ 🎥 Initial Values 1
 - ▶ Thermal Insulation 1
 - Diffuse Surface 1 Iron
 - Diffuse Surface 1 Epoxid
 - Heat Flux 1 -Iron
 - Heat Flux 1 -Epoxid
 - Periodic Condition 1
 - ▶ Famperatur 1 Head Temperatur 1 Head Temperatur 1

- Multiphysics
 - Electromagnetic Heat Source 1 (emh 1)
 - h Boundary Electromagnetic Heat Source 1 (bemh 1)
 - Temperature Coupling 1 (tc1)

Winding Losses

- > input current 30 A
- stationary temperature: 95,41 degC
- hottest location at the end windings

Winding Losses

Iron Losses

Hysteresis

$$p_{hyst} = \frac{1}{\rho * T} \int_0^T \left[H_c * \left(\frac{dB}{dt} \right) \right] dt$$

Eddy Current:

$$p_{eddy} = \frac{1}{2 * \pi^2 * T} \int_0^T \left[k_{eddy} * \left(\frac{dB}{dt} \right)^2 \right] dt$$

$$k_{eddy} = \frac{\pi^2 * \sigma * d^2}{2 * \lambda * \rho} * \frac{\sinh \lambda - \sin \lambda}{\cosh \lambda - \cos \lambda}$$

$$\lambda = \frac{d}{\delta}$$

$$\delta = \frac{1}{\sqrt{\pi * f_{el} * \mu * \sigma}}$$

Iron Losses

Magnetic Solution

I = 50A

 $f = 2500 \, Hz$

 $f = 5000 \, Hz$

Eddy Current

$$P_{eddy} = 0.1 W$$

$$P_{eddy}=0{,}43\:W$$

Hysteresis

$$P_{hyst} = 280 W$$

$$P_{hyst} = 550 \, W$$

Iron Losses

Eddy Current

Hysteresis

Summary

- modelling process defined
 - > models meets the qualitative expectations
 - >accuracy has to be validated by physical test

- >physical tests are necessary
 - > fit model parameter
 - prove and increase the accuracy

