COMSOL CONFERENCE 2017 ROTTERDAM

Finite Element Method based

Investigation of IPMSM Losses

Martin Schmidtner,
Prof. Dr. -Ing. Carsten Markgraf,
Prof. Dr. -Ing. Alexander Frey

Agenda:

$>$ Introduction
$>$ Motor Concept
$>$ Theory
$>$ Winding Losses
>Iron Losses

Introduction: The Project

- Formula Student:

The Competition challenges teams of university students to conceive, design, fabricate, develop and compete with small formula style race cars. (rules Formula Student)

$\equiv!$

Introduction: Topic

Develepmoment of a permanent excited synchronous motor for a four wheel drived FSE-vehicle:

- electromagnetic field calculation
- mechanical design
- thermal behaviour
- building and testing

Introduction: Topic

Develepmoment of a permanent excited synchronous motor for a four wheel drived FSE-vehicle:

- electromagnetic field calculation
- mechanical design
- thermal behaviour
- building and testing

Motor Concept

Motor Data	
Motor Type	IPMSM
Connection Type	Star Connection
Stator Slots	12
Pole Pairs	5
Number of Winding	19
Max. Phase Current	70 A
System Voltage DC	600 V
Max. Torque	21 Nm
No-Load Base Speed	Ca. 16.000 Nm
Outer Diameter	$89,9 \mathrm{~mm}$
Estimated Weight	5 kg
Requested Power Peak	21 kW
Requested Power Nominal	$12,5 \mathrm{~kW}$

\cdots

Theory

$>$ Winding Losses
$>$ accrue due to the electrical resistance of the windings
$>$ resistance depends on material property, geometry and temperature

$$
R=\frac{L_{\text {coil }}}{\sigma_{\text {cop }} * A_{\text {coil }}} \quad \square R(\vartheta)=R_{\text {ref }} *\left[1+\alpha\left(\vartheta-\vartheta_{\text {ref }}\right)\right] \quad P_{\text {win }}=m * R * I^{2}
$$

$>$ Iron Losses
$>$ separated in hysteresis and eddy current losses

Winding Losses

Winding Losses

$>$ input current 30 A
$>$ stationary temperature: 95,41 degC
$>$ hottest location at the end windings

Winding Losses

Iron Losses

Hysteresis

$$
p_{\text {hyst }}=\frac{1}{\rho * T} \int_{0}^{T}\left[H_{c} *\left(\frac{d B}{d t}\right)\right] d t
$$

Eddy Current:

$$
\begin{gathered}
p_{\text {eddy }}=\frac{1}{2 * \pi^{2} * T} \int_{0}^{T}\left[k_{\text {eddy }} *\left(\frac{d B}{d t}\right)^{2}\right] d t \\
k_{\text {eddy }}=\frac{\pi^{2} * \sigma * d^{2}}{2 * \lambda * \rho} * \frac{\sinh \lambda-\sin \lambda}{\cosh \lambda-\cos \lambda} \\
\lambda=\frac{d}{\delta} \\
\delta=\frac{1}{\sqrt{\pi * f_{e l} * \mu * \sigma}}
\end{gathered}
$$

Iron Losses

Magnetic Solution

$$
\begin{aligned}
& I=50 \mathrm{~A} \\
& f=2500 \mathrm{~Hz} \\
& f=5000 \mathrm{~Hz}
\end{aligned}
$$

Eddy Current
$P_{\text {eddy }}=0,1 \mathrm{~W}$
$P_{\text {eddy }}=0,43 \mathrm{~W}$

Hysteresis
$P_{\text {hyst }}=280 \mathrm{~W}$
$P_{\text {hyst }}=550 \mathrm{~W}$

Iron Losses

Summary

$>$ modelling process defined
$>$ models meets the qualitative expectations
$>$ accuracy has to be validated by physical test
$>$ physical tests are necessary
$>$ fit model parameter
$>$ prove and increase the accuracy

