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Experimental systems (Bartlett et al.)

PMMA charged particles in Dodecane, non-polar solvent.

Salt-free suspension: only added counterions.
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Applications: paints, inks, cosmetics, food industry, electrophoretic displays (EDP),
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renewable energy, nanoparticulate materials, etc...



Equilibrium Electric Double Layer (EDL)
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Equilibrium between diffusive and electrostatic force over ions: Poisson-Boltzmann equation

Spherical symmetry of the ionic concentration and electric potential
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The applied electric field produces a distortion of the EDL: induced dipole moment

Cylindrical symmetry of the ionic concentration and electric potential 4



Standard theories of electrophoresis:

* Valid for weak electric fields, i.e., low distortion of the EDL in comparison with
the equilibrium state.

* Linearization of all fields (electric potential, ionic distribution, flow field, ...) to
first order in the applied electric field.

* Within this approximation, the electrophoretic mobility is independent of the

applied electric field.
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Goals:

* Make non-linear calculations with the full non-linear set of governing equations
W) COMSOL Multiphysics.
* Test the validity range of the linear theory and...

* Try to understand the observed mechanism and compare with experimental data
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Governing
Equations

Poisson’s equations for the electric potential.

Fick’s second law with diffusion, flow convection and

electromigration for the counterionic concentration.

Navier-Stokes equations for incompressible fluid flow

with an electric body force.

Newton’s second law for the particle motion.



Governing equations

p,,(r)
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Poisson:  V*W(F)=- p.,(r)=z ec(r)

lonic balance: ag(r) +V- (—D§C(l7) - zceucc(FW‘P(F)) +ii(F)-Ve(F) =0
t

O 1 p(i)- 97 = V[-p@)1+n(Va@) + (VA )|+ 76)

Navier-Stokes: p

V-i(F)=0  f(7)=-zec(F)VU(F)

Particle motion: ﬁ' = ]«: + = ma IEW.SC = Sﬁs T-dS Iizec = gﬁs M dS
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Numerical parameters

PHYSICAL VALUES USED
Surface charge density: o= 1.14-10>C/m?

GEOMETRICAL VALUES USED Temperature: T =25 °C

Particle radius: a = 775 nm Relative electric permittivity: ¢. = 2.01

Cell radius: b = ag/3 Medium density: p=0.745 g/cm3
Volume fraction: ¢= 103 Medium viscosity: n=1.34-103 Pa-s

Added Counterions: TFPhB-

Limiting molar conductivity: 20.8 S-cm?/mol

Applied electric field: Variable



Electrostatics
4 % Electrostatics [es)
ol Charge Conservation 1
£ Axial Symmetry 1
£ Zero Charge 1
o Initial Values 1
(2 Surface Charge Density 1
@ Space Charge Density 1
(= Electric Potential 1
_ =% Ground 1

Surface charge Ground (equilibrium) or
density /

Electric field (-E*2)

Space charge density

* Variables

" MName Expression

rhocharge |c*val®e_const™MN_A_const
F el intop2(es.dnTz)
Fz intop2(-spf.T_stressz)

10




Laminar Flow

Opposite Particle
velocity: — Xdot

Zero quid/

velocity

Volume force:

* ‘olume Force

A 3; Larninar Flow (spf)

w Fluid Properties 1
=) Axial Symmetry 1
2 wall 1

w Initial Values 1

@ volume Force 1
) Qutlet 1

) Inlet1

== Global Equations 1

Volume force

E - rhocharge™Vr

-spf.rho*Xdott-rhocharge™'z z

Nfm?
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Outlet
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Counterion Concentration

sE* Transport of Diluted Species (chds)

2 Convection, Diffusion, and Migration
£ Axial Symmetry 1

2 Mo Flux 1

wl Initial Values 1

=4 Open Boundary 1

=% Concentration 1

Fixed concentration
(equilibrium) or
Open boundary (with
applied electric field)

NO ionic flux mme==—""

Convection, diffusion and
electromigration
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ODE for the particle velocity
Global Equations N

¥ Global Equations

Flutieiget) =0, ulty) = up, Ue(tp) =Ueg

Mame flu,ut, utt t) (m/s) Initial value (ul} {  Initial value (utd)  Description
Xdot Adott-(F_z+F_el)/mass_part |0 0
0 0

Electrophoretic velocity

A 53.,_3 Larninar Flow (spf)

o ¥ Variables
w Fluid Properties 1

£ Axial Syrmmetry 1 " Name  Expression

T Walll rhocharge |c*wal®e_const*MN_A_const
o Initial Values 1 F el intop2(es.dnTz)

@ Volume Forcel Fz intop2(-spf. T_stressz)
2 Outlet1

) Inlet 1

== Global Equations 1
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Mesh

Quad mesh used in the simulations.
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Time=2s Surface: Electric potential (V) Arrow Surface: Electric field
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Reduced Electrophoretic Mobility

Electrophoretic mobility numerical results
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Stationary reduced electrophoretic mobility for different volume fractions.
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Forces (N)

Reduced Electrophoretic mobility
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Forces (N)
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Reduced Electrophoretic Mobility

Comparison with experiments

+~Experimental results

*Difussion coefficient D

<Difussion coefficient D/10

=Dijfussion coefficient D/100

P10t 10> 10° 10
Electric field (V/m)

Stationary reduced electrophoretic mobility as a function of applied electric fields.

The electric field is applied at time t = 0 s over the equibrium electric double layer. »



We have made time-dependent calculations using COMSOL Multiphysics to solve the full
non-linear set of equations that governs the elctrophoresis of nanoparticles.

The results of the non-linear model coincides with the predictions of the standard linear
theories up to 4:10* V/m in the applied electric field.

We obtain numerical results that reproduce qualitetively the experimental behavior
observed and can explain the unbinding of counterions under a high electric field, which
is a non-linear effect.

The predicted numerical electric field onset of the non-linear regime (= 4:10* VV/m) is
significantly higher than the one observed in the experimental results (= 4-10* V/m) . We
think that this discrepancy is due to the finite ionic size. We will include this correction in

future work.
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