COMSOL CONFERENCE 2017 ROTTERDAM

Non-linear DC Electrophoresis in

High Electric Field Conditions

UNIVERSIDAD DE MÁLAGA Emilio Ruiz-Reina¹ and Félix Carrique²

¹Dpto. Física Aplicada II, Universidad de Málaga, Spain ²Dpto. Física Aplicada I, Universidad de Málaga, Spain

Experimental systems (Bartlett et al.)

PMMA charged particles in Dodecane, non-polar solvent.

Salt-free suspension: only added counterions.

Added Counterions: TFPhB⁻

Applications: paints, inks, cosmetics, food industry, electrophoretic displays (EDP), renewable energy, nanoparticulate materials, etc...

Equilibrium Electric Double Layer (EDL)

Equilibrium between diffusive and electrostatic force over ions: Poisson-Boltzmann equation Spherical symmetry of the ionic concentration and electric potential

Electrophoresis: Applied Electric Field

The applied electric field produces a distortion of the EDL: induced dipole moment

Cylindrical symmetry of the ionic concentration and electric potential

4

Standard theories of electrophoresis:

- Valid for **weak electric fields**, *i.e.*, low distortion of the EDL in comparison with the equilibrium state.
- **Linearization** of all fields (electric potential, ionic distribution, flow field, ...) to first order in the applied electric field.
- Within this approximation, the **electrophoretic mobility is independent of the applied electric field**.

E-Field / 10^4 V m⁻¹

Goals:

- Make non-linear calculations with the full non-linear set of governing equations COMSOL Multiphysics.
- Test the validity range of the linear theory and...
- Try to understand the observed mechanism and compare with experimental data

Non-linear effects observed that cannot be described with the standard theories.

GoverningPoisson's equations for the electric potential.Equations

Fick's second law with diffusion, flow convection and

electromigration for the counterionic concentration.

Navier-Stokes equations for incompressible fluid flow with an electric body force.

Newton's second law for the particle motion.

Governing equations

Poisson:
$$\vec{\nabla}^2 \Psi(\vec{r}) = -\frac{\rho_{el}(\vec{r})}{\varepsilon_r \varepsilon_0}$$
 $\rho_{el}(\vec{r}) = z_c ec(\vec{r})$

Ionic balance:
$$\frac{\partial c(\vec{r})}{\partial t} + \vec{\nabla} \cdot \left(-D\vec{\nabla}c(\vec{r}) - z_c e\mu_c c(\vec{r})\vec{\nabla}\Psi(\vec{r}) \right) + \vec{u}(\vec{r}) \cdot \vec{\nabla}c(\vec{r}) = 0$$

Navier-Stokes:
$$\rho \frac{\partial \vec{u}(\vec{r})}{\partial t} + \rho \left(\vec{u}(\vec{r}) \cdot \vec{\nabla} \right) \vec{u}(\vec{r}) = \vec{\nabla} \left[-p(\vec{r})\mathbf{I} + \eta \left(\vec{\nabla} \vec{u}(\vec{r}) + (\vec{\nabla} \vec{u}(\vec{r}))^T \right) \right] + \vec{f}(\vec{r})$$
$$\vec{\nabla} \cdot \vec{u}(\vec{r}) = 0 \qquad \vec{f}(\vec{r}) = -z_c ec(\vec{r}) \vec{\nabla} \Psi(\vec{r})$$

Particle motion:
$$\vec{F} = \vec{F}_{visc} + \vec{F}_{elec} = m\vec{a}$$
 $\vec{F}_{visc} = \oint_{S_p} \mathbf{T} \cdot d\vec{S}$ $\vec{F}_{elec} = \oint_{S_p} \mathbf{M} \cdot d\vec{S}$

Numerical parameters

GEOMETRICAL VALUES USED

Particle radius: *a* = 775 nm

Cell radius: $b = a\phi^{1/3}$

Volume fraction: $\phi = 10^{-3}$

PHYSICAL VALUES USED

Surface charge density: $\sigma = 1.14 \cdot 10^{-5} \text{ C/m}^2$ Temperature: $T = 25 \text{ }^{\circ}\text{C}$ Relative electric permittivity: $\varepsilon_r = 2.01$ Medium density: $\rho = 0.745 \text{ g/cm}^3$ Medium viscosity: $\eta = 1.34 \cdot 10^{-3} \text{ Pa} \cdot \text{s}$ Added Counterions: TFPhB⁻ Limiting molar conductivity: 20.8 S·cm²/mol Applied electric field: **Variable**

Counterion Concentration

ODE for the particle velocity

(u,u _t ,u _{tt} ,t)	$= 0, \ u(t_0) = u_0, \ u_t(t_0) = u_{t0}$					
** Name	f(u,ut,utt,t) (m/s)	Initial value (u0) (Initial value (ut0)		Description	
Xdot	Xdott-(F_z+F_el)/mass_part	0	0		Electrophoretic velocity	
		0	0			
Î	 Laminar Flow (spf) Fluid Properties 1 	L	Variabl	es		
	 Laminar Flow (spf) Fluid Properties 1 Axial Symmetry 1 Wall 1 	L L Irh	Variabl Name ocharge	es Expressio	n onst*N A const	
	 Laminar Flow (spf) Fluid Properties 1 Axial Symmetry 1 Wall 1 Initial Values 1 	L L rh F_	Variabl Name ocharge el	es Expressio c*val*e_co intop2(es	n onst*N_A_const .dnTz)	
	 Laminar Flow (spf) Fluid Properties 1 Axial Symmetry 1 Wall 1 Initial Values 1 Volume Force 1 	L L Th F_ F_	Variabl Name ocharge el	es Expressio c*val*e_co intop2(es intop2(-sp	n onst*N_A_const .dnTz) of.T_stressz)	
	 Laminar Flow (spf) Fluid Properties 1 Axial Symmetry 1 Wall 1 Initial Values 1 Volume Force 1 Outlet 1 	L L Th F_	Variabl Name ocharge el z	es Expressio c*val*e_co intop2(es intop2(-sp	on onst*N_A_const .dnTz) of.T_stressz)	

 ~ 1

. .

Mesh

Quad mesh used in the simulations.

Concentration (reduced)

Equilibrium EDL:

Concentration distribution

Electrophoretic mobility numerical results

Stationary reduced electrophoretic mobility for different volume fractions.

EDL distortion

Stationary ionic distributions for different electric field values.

Time behaviour low electric field $EI = 10^3 V/m$

Time behaviour high electric field El = 10⁶ V/m

Comparison with experiments

Stationary reduced electrophoretic mobility as a function of applied electric fields.

The electric field is applied at time t = 0 s over the equibrium electric double layer.

Conclusions

- We have made time-dependent calculations using COMSOL Multiphysics to solve the full non-linear set of equations that governs the elctrophoresis of nanoparticles.
- The results of the non-linear model coincides with the predictions of the standard linear theories up to $4\cdot 10^4$ V/m in the applied electric field.
- We obtain numerical results that reproduce qualitetively the experimental behavior observed and can explain the unbinding of counterions under a high electric field, which is a non-linear effect.
- The predicted numerical electric field onset of the non-linear regime (≈ 4·10⁴ V/m) is significantly higher than the one observed in the experimental results (≈ 4·10⁴ V/m). We think that this discrepancy is due to the finite ionic size. We will include this correction in future work.

Acknowledgements

Financial support by Ministerio de Economía y Competitividad, Spain (Project FIS2013-47666-C3-3-R), co-financed with ERDF funds by the EU, is gratefully acknowledged.

References

1. D. A. J. Gillespie, J. E. Hallett, O. Elujoba, A. F. C. Hamzah, R. M. Richardson, P. Bartlett, *Counterion condensation on spheres in the salt-free limit*, Soft Matter, **10**, 566 (2014).

2. G. Hussain, A. Robinson, P. Bartlett, *Charge Generation in Low-Polarity Solvents: Poly(ionic liquid)-Functionalized Particles*, Langmuir, **29**, 4204 (2013).

3. F. Carrique, E. Ruiz-Reina, F. J. Arroyo, M. L. Jiménez, A. V. Delgado, *Dynamic electrophoretic mobility of spherical colloidal particles in salt-free concentrated suspensions*, Langmuir, **24**, 2395 (2008).

Thank you very much for your attention!!

Tot ziens