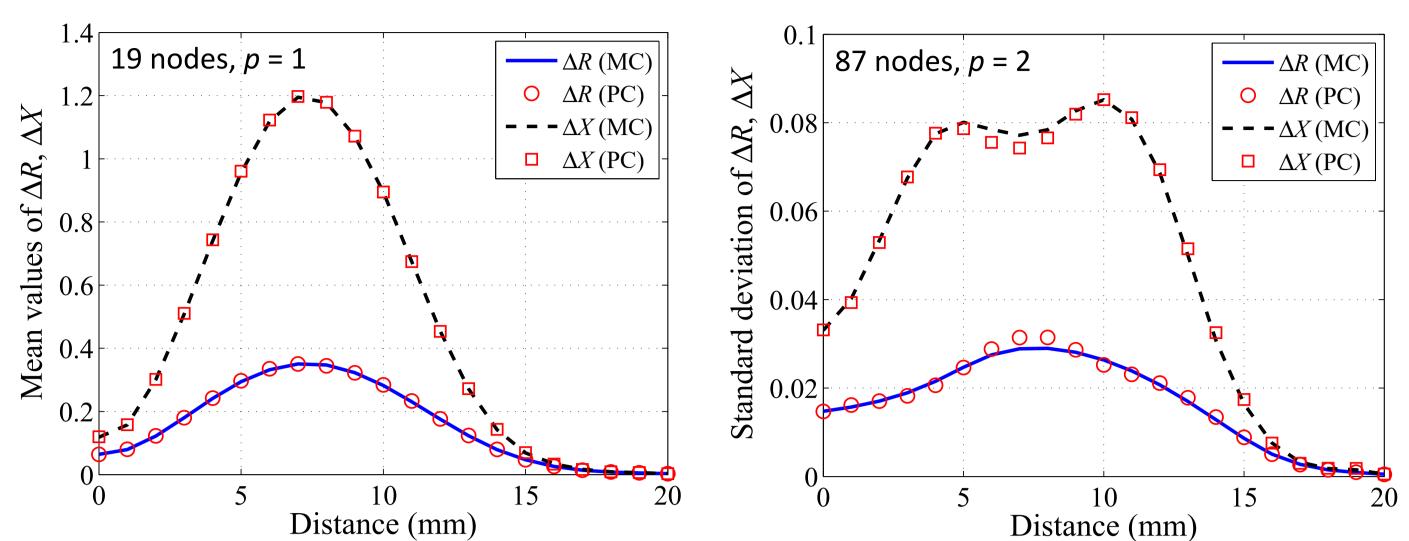
COMSOL CONFERENCE 2017 ROTTERDAM

Polynomial-Chaos Uncertainty Modeling in Eddy-Current Inspection of Cracks

T. T. Zygiridis¹, A. E. Kyrgiazoglou², T. P. Theodoulidis²


¹Dept. of Informatics and Telecommunications Engineering, University of Western Macedonia, Kozani, Greece ²Dept. of Mechanical Engineering, University of Western Macedonia, Kozani, Greece

tzyqiridis@uowm.qr akyriazoqlou@uowm.gr theodoul@uowm.gr

– Introduction

- We are interested in studying the problem of *eddy-current* \checkmark *inspection of cracks*, when *geometric uncertainties* are present.
- Till today, problems involving eddy currents are rarely solved computationally in a *stochastic framework*.
- FEM modeling via the COMSOL[®] software is exploited, combined with *Matlab scripting*.
- *Monte-Carlo* (MC) methodologies are *computationally inefficient*, due to *slow convergence*.

Numerical Results

Uncertainty quantification is performed here in a *non-intrusive* fashion, by computing *polynomial-chaos (PC) expansions* of the random output quantities in an efficient manner that adopts *sparse*grid quadrature schemes.

> **Reliable** statistical information is extracted with a reduced number of simulations.

– Problem Description

$$\nabla \times \left(\frac{1}{\mu} \nabla \times \mathbf{A}\right) + \left(j\omega\sigma - \omega^2 \varepsilon\right) \mathbf{A} = \mathbf{J}_s \text{ in } \Omega, \ \hat{\mathbf{n}} \times \mathbf{A} = \mathbf{0} \text{ at } \partial \Omega$$

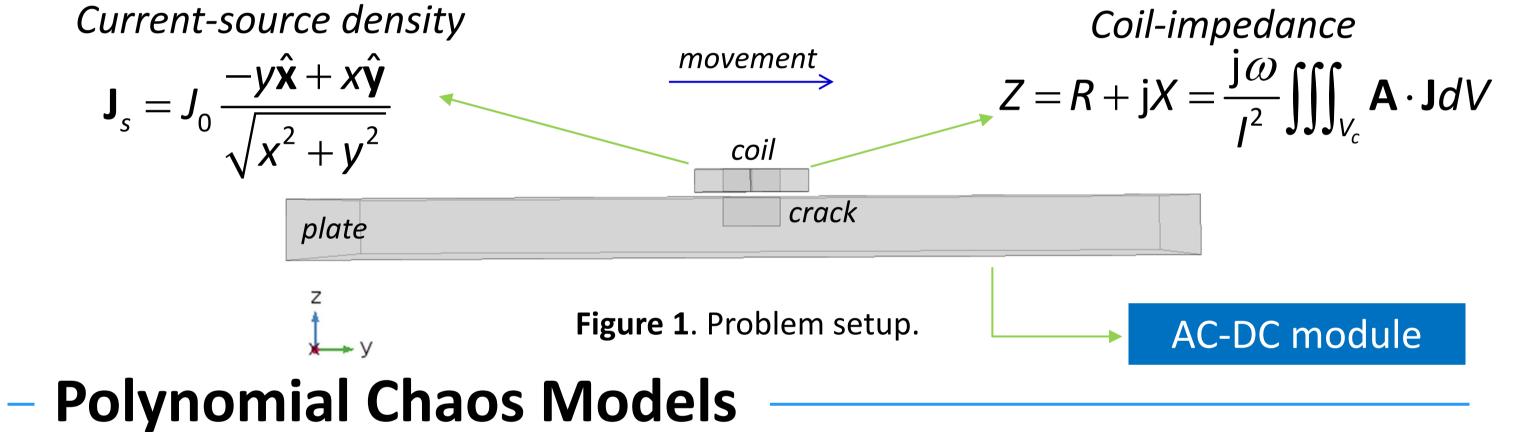
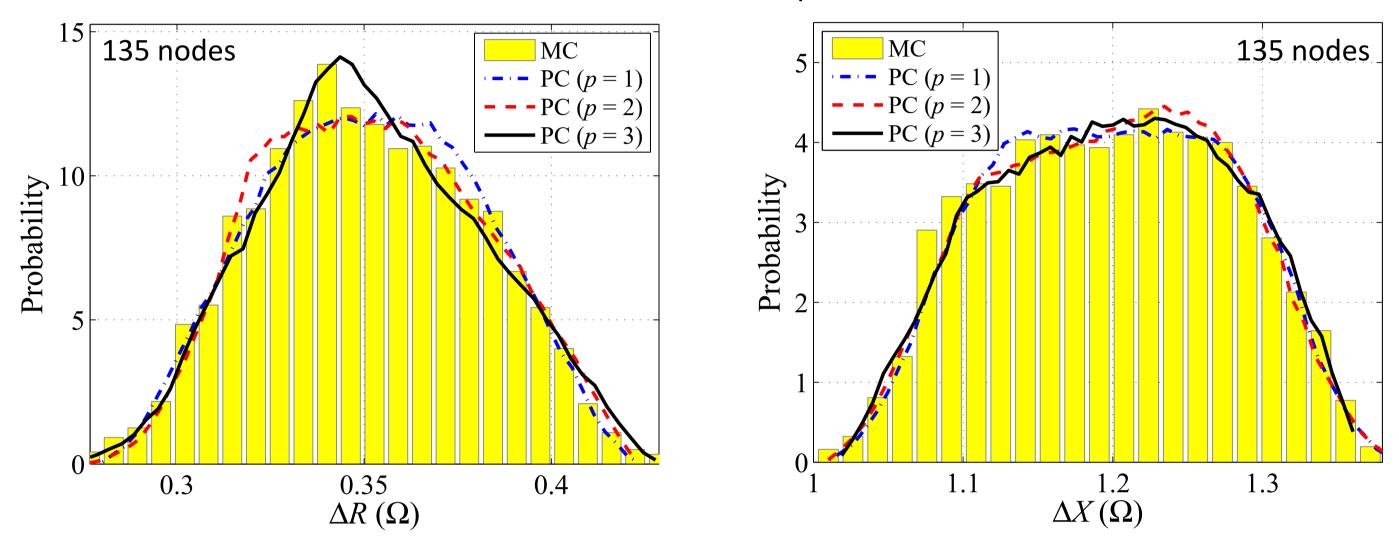
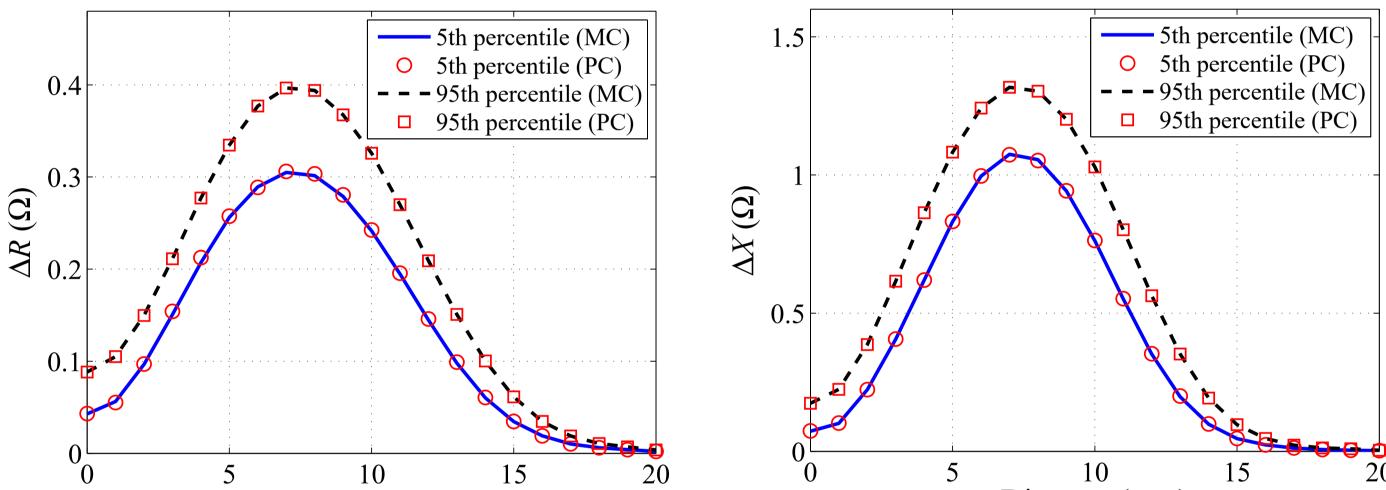
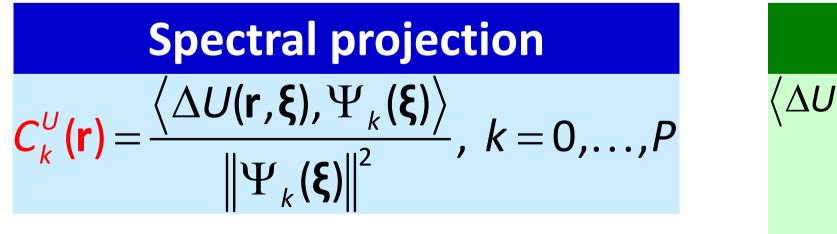
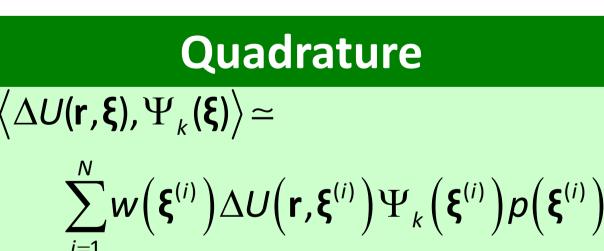
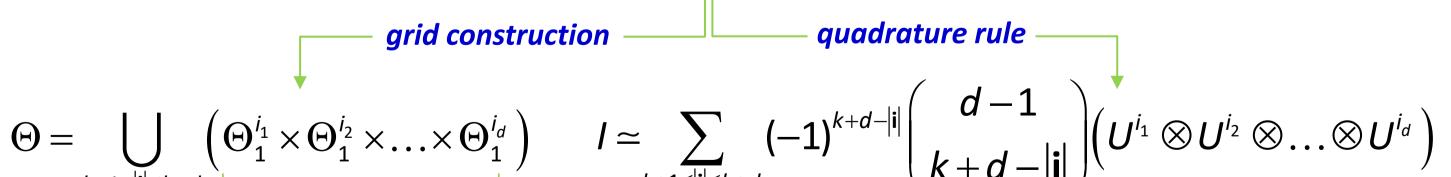




Figure 2. Mean value (left) and standard deviation (right) of the change in coil's impedance, as a function of the coil position.




Figure 3. Computed PDFs corresponding to ΔR (left) and ΔX (right) at a distance of 7 mm.


p-th order PC series of ΔR , ΔX for *d* random variables

Calculation of Expansion Coefficients

Sparse-grid (Smolyak) approach

Distance (mm)

Distance (mm)

15

15

10

Distance (mm)

Figure 5. Calculation of the first-order Sobol indices,

regarding the real part (top) and the imaginary part

(bottom) of the coil's impedance change.

20

25

10

Distance (mm)

20

25

Figure 4. Upper and lower bounds of ΔR and ΔX , represented by the 95th and 5th percentiles.

contributions 9.0

0.4 O.4

First-

contributions 9.0

order 0.4

First-

Ω

-5

Sensitivity Analysis

Direct calculation of *Sobol indices* from the PC coefficients.

 $v \in \{\{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$

The significant influence of the *crack's length* on the output variability is revealed

Conclusion

The *deterministic* FEM solver of COMSOL[®] has been used for the investigation of *stochastic eddy-current testing* problems.

$k+1 \le \mathbf{i} \le k+d$	$\sum_{k+1 \le \mathbf{i} \le k+d} (k+d-$	
Delayed Kronrod- Patterson nodal sets		
Mean value $E[\Delta U] = C_0^U$ P standard statistical norms		
Variance $\operatorname{var}[\Delta U] = \sum_{k=1}^{r} (C_k^U)^2 \ \Psi_k(\xi)\ ^2$ from the expansion coefficients		
	Matlab directives	
	<pre>function out = coil_defect(m,xc,yc,zc)</pre>	Computational cost
-0.2 -0.4 -0.6 -0.6	•••	2000 MC samples
$\begin{array}{c} -0.8 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -$	<pre>model.param.set('m', [num2str(m), '[mm]'], 'movement');</pre>	require
	<pre>model.param.set('xc', [num2str(xc),</pre>	approximately 6.3
	<pre>'[mm]'], 'x dimension of crack'); model.param.set('yc',[num2str(yc),</pre>	days on an i7-4820K
-0.2 -0.4 -0.6	<pre>'[mm]'], 'y dimension of crack'); model.param.set('zc',[num2str(zc),</pre>	CPU @ 3.7 GHz!
$\begin{array}{c} -0.8 \\ -1.1 \\ -1.1 \\ -0.5 \\ -0.5 \\ -0.5 \\ 0 \\ -1.1 \\ -1.1 \\ -0.5 \\ 0 \\ -1.1 \\ -0.5 \\ 0 \\ 0.5 \\ -1.1 \\ -0.5 \\ 0 \\ 0.5 \\ 1 \\ -1.1 \\ -0.5 \\ 0 \\ 0.5 \\ 1 \\ -1.1 \\ -0.5 \\ 0 \\ 0.5 \\ 1 \\ -1.1 \\ -0.5 \\ 0 \\ 0.5 \\ 1 \\ -1.1 \\ -0.5 \\ 0 \\ 0.5 \\ 1 \\ -1.1 \\ -0.5 \\ 0 \\ 0.5 \\ 1 \\ -1.1 \\ -0.5 \\ 0 \\ 0.5 \\ 1 \\ -1.1 \\ -0.5 \\ 0 \\ 0.5 \\ 1 \\ -1.1 \\ -0.5 \\ 0 \\ 0.5 \\ 1 \\ -1.1 \\ -0.5 \\ 0 \\ 0.5 \\ 1 \\ -0.5 \\ 0 \\ 0.5 \\ 1 \\ -0.5 \\ 0 \\ 0.5 \\ 1 \\ -0.5 \\ 0 \\ 0.5 \\ 1 \\ -0.5 \\ 0 \\ 0.5 \\ 1 \\ -0.5 \\ 0 \\ 0.5 \\ 1 \\ -0.5 \\ 0 \\ 0 \\ 0.5 \\ 1 \\ -0.5 \\ 0 \\ 0 \\ 0.5 \\ 1 \\ -0.5 \\ 0 \\ 0 \\ 0.5 \\ 1 \\ -0.5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	<pre>'[mm]'], 'z dimension of crack');</pre>	

- calculation of statistical norms he expansion efficients putational cost 0 MC samples require roximately 6.3
- The PC approach provides *reliable* statistical information using a *fraction* of MC's computational requirements.
- Uncertainty in the *length of the defect* appears to have the most *significant impact* on the impedance variability.
- \checkmark A $\pm 10\%$ uncertainty in the three geometric parameters may induce a deviation in the range 8-22% in ΔR and in 5-25% in ΔX .

References

- 1. L. Santandrea and Y. Le Bihan, Using COMSOL-multiphysics in an eddy current nondestructive testing context, *Proceedings of the COMSOL Conference*, Paris (2010).
- 2. D. Xiu and G. E. Karniadakis, The Wiener–Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comp., 24 (2), 619-644 (2002).
- 3. S. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions, Sov. Math., Dokl., 4, 240-243 (1963).

Excerpt from the Proceedings of the 2017 COMSOL Conference in Rotterdam