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Abstract: Heat transfer in a plane shear 
ow
con�guration consisting of two in�ntely long
parallel plates is considered. The upper pla-
nar plate drives the 
ow by a constant veloc-
ity, whereas the lower plate is �xed and has
a regular sinusoidally varying pro�le [3]. In
laminar 
ows over undulated substrates eddies
can be generated due to the kinematical con-
straints; details of the genesis and manipula-
tion of which is discussed in [4] and [5].

A closed form analytical solution for the
the velocity �eld, based on lubrication theory
as well as a semi{analytic solution, provided
by the application of Ritz's direct method, for
the temperature �eld is derived for the creep-
ing 
ow. Additionally, detailed numerical so-
lutions are obtained via a �nite element for-
mulation of the geoverning equations for mass,
momentum and energy conservation, enabling
an exploration of the inertial e�ects.

It is shown that changes in the mean plate
separation, that is the geometry, and the level
of inertia present a�ect the local hydrody-
namic 
ow structure in the form of kinemat-
ically and inertially induced eddies, respec-
tively. These in turn impact on the local
laminar thermal mixing, and consequently en-
hance the global heat transfer. Resulting Nus-
selt numbers are reported for a wide range of
Pecl�et and Reynolds numbers with agreement
between the two methods of solution, for the
case of creeping 
ow, found to be extremely
good.
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1 Introduction

Consider, as illustrated in Fig. 1, the case of
steady, two-dimensional Couette 
ow of an in-
compressible 
uid con�ned between two in�-
nite, horizontally aligned plates, with the mov-
ing upper 
at plate, temperature T0, sepa-
rated by a small mean distance from the sta-

tionary lower one which has a regular sinu-
soidally varying pro�le and is at temperature
T1, (T1 > T0). The 
uid properties are taken
as those for silicone oil, as used in [6] in the
investigation of the corresponding isothermal

ow problem. The thermal conductivity, �,
and speci�c heat, cp, are assumed constant,
while the density � and viscosity �, have the
form

�(T ) = �0 (1� �T ) (1)

�(T ) = �0 (1� ��T ) (2)

with the non-dimensional constants � and ��

denoting the coe�cients of thermal expansion
and thermoviscosity, respectively.
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Figure 1: Schematic of the 
ow geometry

The two coordinates ~x, ~z are scaled by �=2�
with � being the wavelength. The velocity
is scaled by the lid velocity u0. Thus, the
geometry is characterised by two nondimen-
sional parameters, namely the dimensionless
mean plate distance h and the dimensionless
amplitude a. Additionally, the pressure ~p and
temperature ~T are scaled as follows

~p =
2��0u0

�
p; ~T = T (T1 � T0) + T0 (3)

with 0 � T � 1.

2 Governing equations

Within the framework of the Boussinesq ap-
proximation the continuity equation in non-
dimensional form simpli�es to

ux + wz = 0 : (4)
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By taking � to be su�ciently small the sys-
tem can be de�ned in such a way that buoy-
ancy e�ects can be neglected and by a proper
choice of the 
uid parameters the stability con-
dition for the non ocurrance of natural con-
vection can be ful�lled, further details can be
found in [3]. In addition thermal expansion
plays no part in the 
ow. Consequently, terms
involving �T can be neglected in the Navier{
Stokes equations

Re [uux + wuz] = �px+2@x [(1� ��T )ux] +

: : : @z [(1� ��T ) (uz + wx)] (5)

Re [uwx + wwz] = �pz+2@z [(1� ��T )wz] +

: : : @x [(1� ��T ) (uz + wx)] : (6)

If dissipation is assumed to be neglegible, see
also [3], the temperature equation reduces to
the following form:

Pe [uTx + wTz]� [Txx + Tzz] = 0 (7)

The Reynolds and the Pecl�et number in the
utilised scaling are de�ned as follows:

Re =
�0u0�

2��0
; Pe =

�u0�0cp
2��

: (8)

3 Boundary conditions

In non-dimensional form the spatial locations
of the lower and the upper plates are given by
z = �a cosx and z = h, respectively, along
which a no-slip condition is applied

u(x;�a cosx) = 0 u(x; h) = 1 (9)

v(x;�a cosx) = 0 v(x; h) = 0 : (10)

For the temperature �eld the correspond-
ing upper and lower plate conditions are the
Dirichlet ones, namely

T (x;�a cosx) = 1; T (x; h) = 0 : (11)

In addition periodic boundary conditions for
all �elds to the left and to the right of the 
ow
domain are imposed.

4 Semi{analytical solution

For simpli�cation a creeping 
ow is consid-
ered, Re ! 0 and thermoviscous coupling
terms involving �� are neglected, leading to an
unilaterally coupled problem and the hydrody-
namic �eld can be solved seperately from the
temperature �eld.

4.1 Hydrodynamic �eld

Invoking the lubrication approximation re-
duces the hydrodynamic problem to the
Reynolds' equation, a single ordinary di�er-
ential equation. Its closed form analytic solu-
tion leads to the following explicit expression
for the streamfunction  [2],

 

hZ2
=
h2 � 4a2 + 3a2Z

2h2 + a2
+
a

h
(Z � 1) cosx ;

(12)
by introducing

Z =
z + a cosx

h+ a cosx
: (13)

as a new coordinate. The coordinate transfor-
mation (x; z) ! (x; Z) maps the 
ow domain
of interest sketched in Fig. 1 to a rectangular
domain [0; 2�] � [0; 1]. In the new coordinate
system, the lubrication solution for the stream
function can be written as a non-orthogonal
series expansion

 = (x; Z) =

n=1X
n=�1

 n(Z)e
�inx (14)

with the coe�cients

 0 =

�
h2 � 4a2

�
hZ2 + 3ha2Z3

2h2 + a2
(15)

 �1 = �
a

2
Z2 (Z � 1) ; (16)

giving an excellent approximation for small di-
mensionless amplitudes to a � 1=2.

4.2 Temperature �eld

The essence of the analysis is the construction
of an analogous series representation for tem-
perature as for the streamfunction (14), i.e.

T = (x; Z) =

n=NX
n=�N

Tn(Z)e
�inx (17)

with N 2 N. It can be shown, see [3] that
equation (7) results from variation of the func-
tional

I =

�Z
��

1Z
0

�
� Pe T (x; Z) (u � r)T (�x; Z)

+rT (x; Z) �rT (�x; Z)
�
(h+a cosx) dZ dx

(18)



with respect to the temperature, provided that
the velocity �eld is symmetric. For isother-
mal creeping 
ow given by equation (12) these
conditions are ful�lled. Use of the above varia-
tional formulation is advantageous since Ritz's
direct method can be applied which represents
an e�cient means of solution [3].

5 Finite element solution

Equations (4)-(7) and the associated bound-
ary conditions (9)-(11) were solved numer-
ically using COMSOL Multiphysics with
the comprised Fluid Dynamics/Incompressible
Navier{Stokes and Heat Transfer/Convection
and Conduction application modules.

A non-uniform mesh comprised of triangu-

lar elements clustered towards the lower plate
was used to discretise the 
ow domain, em-
ploying second order interpolation functions
for velocities and temperature and �rst order
interpolation for pressure. The resulting sys-
tem of equations was solved iteratively using
a form of the damped Newton method as de-
scribed in [1]. The problem was programmed
in the MATLAB environment to allow for the

exible control of geometric and 
uid param-
eters. A variety of mesh densities was exam-
ined to establish the number and distribution
of elements required to guarantee mesh inde-
pendent solutions for the parameter range in-
vestigated. For a typical 
ow geometry with
a = 1=2 and h = 3=4 the number of ele-
ments required to ensure mesh independence
was found to be 275710.

semi{analytical numerical

streamlines

Pe ! 0

Pe = 10

Pe = 100

Pe = 300

Figure 2: Flow structure (streamlines) and corresponding temperature �eld (isotherms) transition with
increasing Pe, obtained semi-analytically (left) and numerically (right), for the case a = 1=2, h = 3=4 [3].

6 Results and discussion

Results for creeping 
ow and 
ow with inertia
are presented independently of each other.

6.1 Creeping 
ow

6.1.1 Temperature �eld

Fig. 2, for the case a = 1=2 and a mean plate
separation of h = 3=4. These were obtained:



(i) using the semi-analytical approach, with
N = 4 modes for the series (17); (ii) numeri-
cally as described above. Agreement between
the two sets of results is seen to be remarkably
close, with the streamline plots showing that
the geometry as speci�ed results in the pres-
ence of a large symmetric eddy while the na-
ture of the corresponding temperature �eld is
Pecl�et number dependent. When Pe = 0 the
problem is one of pure heat conduction and
the temperature �eld is symmetric as shown.
Symmetry is, however, soon lost due to the
presence of convection as demonstrated for
the case Pe = 10. As Pe is increased fur-
ther a point is soon reached, when for su�-
ciently large values, see for example the case
Pe = 100, the asymmetry present becomes
pronounced as warmer 
uid is transported up-
wards on the left side of the domain with a
corresponding downward movement of colder

uid on the right. For Pecl�et numbers of ap-
proximately 300 and greater, the isotherms
mimic the corresponding streamline pattern
with laminar thermal mixing occurring.

6.1.2 Global heat transport

A measure for the global heat transport is
provided by the Nusselt number Nu which is
found from the temperature �eld as

Nu = �
h

2�

�Z
��

Tz
��
z=h

dx (19)

It represents the non-dimensional global
heat 
ux, scaled with the corresponding heat

ux � (T1 � T0) =h for Couette 
ow between
parallel 
at plates �xed at the same reference
temperatures and in which case Nu = 1.

The Nusselt number was calculated both
semi-analytically and numerically for the case
of a bottom plate with amplitude a = 1=2 and
for di�erent mean plate separations, the re-
sults of which are plotted against Pecl�et num-
ber in Fig. 3. Values of h were chosen in
such a way that four qualitatively di�erent
cases could be investigated: one without an
eddy present (h = 7=4), a second exhibiting
a small eddy (h = 1), the third with a large
eddy present (h = 3=4), and a fourth case in
which the 
ow has all but degenerated to that
of a driven-cavity like 
ow consisting almost
entirely of a large single eddy (h = 3=5).
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Figure 3: Global heat transport depicted as plots
of Nusselt number vs. Pecl�et number for the case
of a lower plate with amplitude a = 1=2 and
four di�erent mean plate separations. The up-
per curves represent the results obtained semi{
analytically [3].

In all cases the analytical and numerical
results are in very good agreement with each
other. Compared to the case of parallel plates
(Nu = 1), it can be seen that there is already
an improvement in the global heat transport
for Pe ! 0; that is, even in the case of pure
heat conduction it is observed that Nu > 1 as
a consequence of the geometry.

For Pe > 0 an additional increase in Nu ,
due to convection, is apparent. This e�ect,
however, depends signi�cantly on the eddy
size: for the case h = 7=4, one without an
eddy, only a tiny improvement in the heat 
ux
is observed, whereas the curve corresponding
to the 
ow containing a small eddy (h = 1)
reveals a distinct gradual increase of the Nus-
selt number with increasing Pe . This e�ect
becomes even more pronounced the larger the
eddy (h = 3=4) and especially so in the case
of a driven-cavity like 
ow (h = 3=5).

6.1.3 Thermal feedback on the 
ow

Thermal feedback due to thermoviscosity
� = �(T ) is investigated numerically, with
buoyancy and thermal expansion e�ects due
to � = �(T ) neglected, as discussed in Sec-
tion 2. In Fig. 4 results are shown for the
case a = 1=2, h = 3=4, a Pecl�et number
Pe = 100 and a thermoviscous coupling with
�� = 1=3 corresponding to a temperature-
dependent viscosity given by

�(T ) = �0

�
1�

T

3

�
(20)

Note that this choice of temperature depen-
dence leads to a 
uid viscosity that is 50%



larger at the colder plate than at the warmer
one. Hence, a strong thermoviscous coupling
is implicit in the calculations. For comparison
purposes streamlines and isotherms are shown
for the case of constant viscosity. Shown also is
the constant viscosity case when the tempera-
tures of the plates are reversed that is, the top
plate is hotter than the bottom one. The sur-
prising result which emerges from this �gure is
that, even in the case of strong thermoviscous

coupling, the feedback e�ect of the temper-
ature on the 
ow is negligibly small. More-
over, by comparing the resulting temperature
�elds there is no discernible di�erence, even in
the case when the temperatures of the upper
and lower plates are reversed. Accordingly,
this result supports the a priori assumption
made when formulating the semi{analytical
method of solution that the 
ow and temper-
ature �elds can be decoupled.

(a)

(b)

(c)

Figure 4: Numerically calculated streamlines (left) and corresponding isotherms (right) for a 
ow geometry
with a = 1=2 and h = 3=4, and Pe = 100: (a) constant viscosity; (b) viscosity according to equation (20);
(c) as (a) but with the upper and lower plate temperatures reversed [3].

6.2 Flow with �nite Reynolds number

6.2.1 E�ect of increasing inertia

Numerical solutions were obtained, see Fig.
6, for Stokes 
ow and at Reynolds number
Re = 100 for the case a = 1=2 and the same
four mean plate separations as considered in
Fig. 3, and with Pe = 100. The streamline
plots to the left, for Stokes 
ow, show the in
u-
ence of the mean plate separation, that is the
geometry, on the eddy structure present; those
on the right, for the case Re = 100, reveal
that the presence of inertia can lead to both
eddy generation and to increased asymmetry
of an existing eddy structure. The shift in the
vortex core, in the case of the latter, has con-
sequences for the corresponding temperature
�eld: in that the area where the heat transport
due to convection is signi�cant is also shifted
to the right.
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Figure 5: Global heat transport depicted as plots
of Nusselt number vs. Pecl�et number, at three dif-
ferent Reynolds numbers, for a lower plate with
amplitude a = 1=2 and the four mean plate sepa-
rations (a){(d) used in Figure 3, see [3].



6.2.2 Global heat transport

Using equation 19 the Nusselt number was cal-
culated for the case of a lower plate with am-
plitude a = 1=2, for the same four mean plate
separations. This was done at three di�er-
ent Reynolds numbers Re = 10; 100; 300 for
Pecl�et numbers between 0 and 350. The re-
sulting curves of Nu versus Pe are shown in
Fig. 5. Compare these with those in Fig. 3
for the corresponding creeping 
ow problem.
The e�ect of inertia is qualitatively di�erent
for the four geometries considered: in the two
cases (d) and (c) commensurate with a smaller
mean plate separation, h = 3=5 and h = 3=4,
respectively, the global heat transport is re-
duced with increasing inertia, whereas in the

two cases (b) and (a) with a larger mean plate
separation, h = 1 and h = 7=4 respectively,
the opposite occurs and it is enhanced. The
explanation for this qualitative di�erence is
found by examining the underlying 
ow struc-
tures. In the case h = 3=4, for instance, the
corresponding velocity �eld shown in Fig. 6
reveals a shift to the right of the vortex core.
Therefore, the area over which convective heat
transport is relevant is reduced. The same
qualitative e�ect is found for h = 3=5, since
in this case too there is a large eddy in the

ow. In contrast, for h = 1 there is only a
small eddy present, while for h = 7=4 there is
no eddy present at assisting the transport of
heat which shows as a corresponding increase
in the Nusselt number.

(d)

(c)

(b)

(a)

Re ! 0 Re = 100

Figure 6: Numerically calculated streamlines (left) and corresponding isotherms (right) for a 
ow geometry

with a = 1=2 and h = 3=4, and Pe = 100: (a) constant viscosity; (b) viscosity according to equation (20);
(c) as (a) but with the upper and lower plate temperatures reversed [3].

7 Conclusion

The subtle interplay that exists between the
global transfer of heat and the underlying

ow structure and hence local laminar thermal
mixing in the case of shear 
ow between two
rigid surfaces at di�erent �xed temperatures {
the hot, upper one, planar; the lower, cooler
one, varying sinusoidally { a small mean dis-

tance apart, has been explored both analyti-
cally and numerically. For creeping 
ow condi-
tions and varying Pecl�et number, the thermal
�eld is found to be asymmetric for all values of
the Pecl�et number other than the limiting con-
ditions of zero and in�nity, at which extremes
the corresponding thermal �eld is symmetric.

Global heat transport, in the form of plots
of Nusselt number against Pecl�et number, is



investigated with agreement between predic-
tions from analysis and ones obtained numer-
ically seen to be extremely good, particularly
for higher values of mean plate separation. It
is found that compared to the case when both
top and bottom plates are 
at there is an im-
provement to be seen in global heat transport
as a consequence of the geometry, even for
the case of pure heat conduction (Pe ! 0),
but which depends signi�cantly on the size
of the underlying eddy structure present as
the Pecl�et number is increased and convection
plays a more signi�cant role.

In the case of non-creeping 
ow, the e�ect
of increasing inertia on both the temperature
�eld and global heat transport is revealed, the
obvious one being to skew the underlying eddy
structure { for moderate Reynolds numbers,
Re = 100, this takes the form of a shift to the
right of the vortex core. The consequence for
the corresponding temperature �elds is that
the region where heat transfer due to convec-
tion is signi�cant is also skewed in the same
direction. The results obtained for global heat
transfer expose the interrelationship between
eddies induced kinematically and due to iner-
tia, in that inertia can result in the creation of
an eddy or enlarge an existing eddy, for a given
lower plate pro�le and mean plate separation,
that is �xed 
ow geometry. Indeed the present
work suggests that for a given sinusoidal vari-
ation of the lower plate it should be possible,
from a practical standpoint, to �nd a criti-
cal mean plate separation for which Reynolds
number e�ects on the global heat transfer are

minimised.
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