Donato Rubinetti

Introduction

Physical Model

Numerical Model

Application Example

Final Remarks

Phase Change Materials

Modeling Approach to Facilitate Thermal Energy Management in Buildings

Donato Rubinetti ¹ Daniel A. Weiss ¹ Arnab Chaudhuri ² Dimitrios Kraniotis ²

¹Institute of Thermal and Fluid Engineering University of Applied Sciences and Arts Northwestern Switzerland

²Department of Civil Engineering and Energy Technology Oslo Metropolitan University, Norway

27.09.2018

COMSOL CONFERENCE 2018 LAUSANNE

Introduction

What are PCMs and what are their application areas?

- Materials with a characteristically large enthalpy of fusion
- Latent heat energy storage systems
- Decouple energy supply and demand \rightarrow increase efficiency
- Wide range of applications from -40 to 500°C, *i.e.* space to photovoltaics

PCM

Donato Rubinetti

- Introduction
- Application Modeling
- Physical Model
- Numerical Model
- Application Example
- Final Remarks

Introduction

The need for modeling PCM

PCM

Donato Rubinetti

- Introduction
- Modeling
- Physical Model
- Numerical Model
- Application Example
- Final Remarks

- Obtain fundamental understanding for freezing and melting cycle
- Predict the complex behavior well enough
- Efficiently choose among the vast selection of suitable PCM
- Design improvements
- Reduce development costs

Physical Model Multiphysical couplings

Donato Rubinetti

Introduction

Physical Model

Numerical Model

Melted fraction

Application Example

Final Remarks

Numerical Model

Implementation into COMSOL Multiphysics

Donato Rubinetti

Introduction

Physical Model

Numerical Model Implementation Melted fraction

Application Example

Final Remarks

$$heta(au) = egin{cases} 0, & ext{solid} \ rac{ au-(au_m-\Delta au/2)}{\Delta au}, & ext{mushy} \ 1, & ext{liquid} \ (1) \end{cases}$$

Donato Rubinetti

Introduction

Physical Model

Numerical Model

Application Example

Temperature

Crossectie Results

Thermostat

Wall core

Final Remarks

Operation / Day Time [h]

Application Example

Observed week in Oslo, temperature profile

-_ ▶ < Ē ▶ Ē Ē ∽ < @

Application Example

Wall crossection of a typical Norwegian building

Donato Rubinetti

Introduction

Physical Model

Numerica Model

Application Example

Temperature

Crossection 1

Results

Crosssection

Thermostat

Wall core

Final Remarks

Donato Rubinetti

Introduction

- Physical Model
- Numerical Model
- Application Example
- Temperatur

Results

- Crosssect
- Wall com
- Final Remarks

Application Example

Results - energy savings?

Operation / Day Time [h]

Donato Rubinetti

Introduction

Physical Model

Numerical Model

Application Example Temperature

Crossection

Results

Thermostat

Wall core temperature

Final Remarks

б

Room Heating

₽

0

24

48

72

Operation Time [h]

96

120

144

168

Application Example

Results - substantial energy savings!

<□ > < @ > < E > < E > E = 9000

Application Example

Wall core temperature

Operation / Day Time [h]

Physical Model

РСМ

Donato Rubinetti

Numerical Model

Application Example

Crossection

Results

Thermostat

Wall core temperature

Final Remarks

Final Remarks

PCM

Donato Rubinetti

ntroduction

Physical Model

Numerical Model

Application Example

Final Remarks

Discussion

- Release heat to reduce heating demand
- For well insulated walls \rightarrow marginal savings!
- But: PCM reduces peak temperatures on both extremes
- Cold climates \rightarrow main benefit in summer

Conclusion

- Comprehensive and suitable modeling approach for phase change phenomena developed
- Rapid orientation whether a PCM meets thermal, technical and economic requirements
- Model shows the importance of including indoor dynamics to assess the PCM potential
- Numerically stable model, extendable to enhanced PCM

Donato Rubinetti

Introduction

Physical Model

Numerical Model

Application Example

Final Remarks

Thank you for your attention!

Donato Rubinetti

Appendix

A - Modeling Functions

Melt Fraction

Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity Viscosity Requirements Mushy zone 2D Test-case BC Carman-Kozeny

 $heta(au) = egin{cases} 0, & ext{solid} \ rac{ au-(au_m-\Delta au/2)}{\Delta au}, & ext{mushy} \ 1, & ext{liquid} \end{cases}$

(2)

Validation

C - Results

D -Application Example

E - 2D Test-Case

F -

A - Modeling Functions Melt Fraction $\theta(T)$

Donato Rubinetti

Appendix

A - Modeling Functions

Melt Fraction

Gaussian

Density Th. Condu Carman-Ko Viscosity Requirement

Mushy zoi

2D Test

BC

Carman-Kozer

 $D(T) = \frac{e^{-\frac{(T - T_m)^2}{(\Delta T/4)^2}}}{\sqrt{\pi (\Delta T/4)^2}}$ (3)

Validation

C - Results

D -Application Example

E - 2D Test-Case

F -

A - Modeling Functions Gaussian Distribution Function D(T)

Temperature T [°C]

< ロ ト < 目 ト < E ト < E ト 三 E つ < C</p>

Donato Rubinetti

Appendix

A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity Requirements Mushy zone

BC

Carman-Kozen

Validation

C - Results

D -Application Example

E - 2D Test-Case

F -

A - Modeling Functions Modified Heat Capacity $C_p(T)$

・ロト・西ト・モー・ 山下 うへの

Donato Rubinetti

Appendix

A - Modeling Functions Melt Fraction Gaussian Heat Capacity Denity Carman-Kozeny Viscosity Requirements Mushy zone 2D Test-case BC Carman-Kozeny

h

Validation

C - Results

D -Application Example

E - 2D Test-Case

F -

$$\rho(T) = \rho_s + \theta(T)(\rho_l - \rho_s)$$
(5)

A - Modeling Functions Modified Material Density $\rho(T)$

Donato Rubinetti

Appendix

A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density

Th. Conductivity Carman-Kozeny Viscosity Requirements Mushy zone 2D Test-case BC Carman-Kozeny

k

Validation

C - Results

D -Application Example

E - 2D Test-Case

F -

$$\kappa(T) = k_s + k(T)(k_l - k_s)$$
(6)

Modified Thermal Conductivity k(T) [W/(mK)]

Donato Rubinetti

Appendix

A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity

Carman-Kozeny

Viscosity Requirements Mushy zone 2D Test-case BC Carman-Kozei $S(T) = A_m rac{(1- heta(T))^2}{ heta(T)^3 + arepsilon}$

(7)

Validation

C - Results

D -Application Example

E - 2D Test-Case

F -

A - Modeling Functions Carman-Kozeny Porosity Function S(T)

Ali C. Kheirabadi and Dominic Groulx. "Simulating Phase Change Heat Transfer using COMSOL and FLUENT: Effect of the Mushy-Zone Constant". In: Computational Thermal Sciences: An International Journal 7.5-6 (2015). DOI: 10.1615/ComputThermalScien.2016014279

Donato Rubinetti

Appendix

A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny

Viscosity

Requirement: Mushy zone 2D Test-case BC Carman-Koze

C - Results

D -Application Example

E - 2D Test-Case

F -

$$\mu(T) = (9 \times 10^{-4} T^2 - 0.6529 T + 119.94) \times 10^{-3}$$
(8)

A - Modeling Functions

Viscosity of *n*-eicosane $\mu(T)$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Donato Rubinetti

Appendix

A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity Requirements Mushy zone 2D Test-case BC

Validation

C - Results

D -Application Example

E - 2D Test-Case

F -

A - Modeling Functions

Basic numerical requirements to govern the physics of PCM

conservation equation	solid fraction	liquid fraction
continuity		\checkmark
momentum		\checkmark
energy	\checkmark	\checkmark

 \rightarrow direct approach: two subdomains for liquid and solid fraction with front tracking algorithm

PCM Donato Rubinetti

Appendix

A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Carman-Kozeny Viscosity Requirements Mushy zone

- BC
- Carman-Kozeny
- Validation
- C Results
- D -Application Example
- E 2D Test-Case

F -

A - Modeling Functions

Alternative approach: introduction of a mushy zone

- Idea: material properties are smeared out over an user-defined melting temperature range
- Method: use of porosity formulation, liquid and solid co-exist in the mushy zone
- Benefits:
 - avoid numerical singularities
 - use one single mesh
 - easy to implement
- Setback: highly mesh-dependent solution in terms of physical accuracy

. Dimensionless シック 三回 《田》《田》《日》

Donato Rubinetti

Appendix

A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity Requirements

Mushy zor 2D Test-ca BC

Carman-Koz

Validation

C - Results

D -Application Example

E - 2D Test-Case

F -

A - Modeling Functions

Boundary conditions and setup

<ロ> <目> <目> <目> <目> <目> <目> <日> <日> <日> <日> <日> <日</p>

Donato Rubinetti

Appendix

A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity Requirements Mushy zone 2D Test-case BC

 $S(T) = A_m rac{(1- heta(T))^2}{ heta(T)^3 + arepsilon}$

(9)

Carman-Kozeny

Validation

C - Results

D -Application Example

E - 2D Test-Case

F -

A - Modeling Functions Carman-Kozeny porosity function S(T)

Ali C. Kheirabadi and Dominic Groulx. "Simulating Phase Change Heat Transfer using COMSOL and FLUENT: Effect of the Mushy-Zone Constant". In: Computational Thermal Sciences: An International Journal 7.5-6 (2015). DOI: 10.1615/ComputThermalScien.2016014279

Donato Rubinetti

Appendix

A - Modeling Functions

Validatior

Results

Model Setup Material properties

8

33

Ş

8

8

10

0

-30

Vxial Distance z [mm]

C - Results

D -Application Example

E - 2D Test-Case

F -Dimensionles Estimation

B - Comparison to Experimental Data Results

Donato Rubinetti

Appendix

A - Modeling Functions

Validation

Model Setup

C - Results

D -Application

E - 2D Test-Case

F -Dimensionless Estimation

B - Comparison to Experimental Data Model Setup

Donato Rubinetti

Appendix

A - Modeling Functions

Validation

Material properties

C - Results

D -Application Example

E - 2D Test-Case

F -Dimensionless Estimation

B - Comparison to Experimental Data

Material properties of *n*-eicosane, comparison with water

.

	<i>n-</i> eicosane		water	
	solid	liquid	solid	liquid
density $ ho$ [kg m ⁻³]	910	769	916	997
thermal conductivity $k [\text{W} \text{m}^{-1} \text{K}^{-1}]$	0.423	0.146	1.6	0.6
heat capacity $\mathit{C_p} \; [extsf{kJ} extsf{kg}^{-1} extsf{K}^{-1}]$	1.9	2.4	2.1	4.2
melting temperature T_m [°C]	36.4	-	0	-
latent heat of fusion L [kJ kg ⁻¹]	248	-	334	-

.

C - Results Grashof Number

PCM

Donato Rubinetti

Appendix

A - Modeling Functions

Validation

C - Results

Grashof Number

Melt Fraction Mesh sensisity Melt fraction Gr Validation I

D -Application

E - 2D Test-Case

C - Results Melt Fraction

PCM

Donato Rubinetti

Appendix

A - Modeling Functions

Validation

C - Results Grashof Number Melt Fraction Mesh sensisitvity Melt fraction Gr

Validation I Validation I

D -Application Example

E - 2D Test-Case

F -Dimensionless Estimation

C - Results

Mesh sensitivity - melting front prediction

PCM

Donato Rubinetti

Appendix

A - Modeling Functions

Validation

C - Results Grashof Number Melt Fraction Melt fraction Gr Validation I

D -Application Example

E - 2D Test-Case

C - Results

Melt fraction - curvature of melting front

PCM

Donato Rubinetti

Appendix

A - Modeling Functions

Validation

C - Results Grashof Number Melt Fraction Mesh sensisitvity Melt fraction

Gr Validation I Validation I

D -Application Example

E - 2D Test-Case

C - Results

Local Grashof number - influence of natural convection

PCM

Donato Rubinetti

Appendix

A - Modeling Functions

Validation

C - Results Grashof Number Melt Fraction Mesh sensisitvity Melt fraction

Gr

Validation I Validation II

D -Application Example

E - 2D Test-Case

Benjamin J. Jones et al. "Experimental and numerical study of melting in a cylinder". In: International Journal of Heat and Mass Transfer 49.15-16 (2006), pp. 2724–2738

Donato Rubinetti

Appendix

A - Modeling Functions

Validation

C - Results Grashof Number Melt Fraction Mesh sensisitvity Melt fraction Gr Validation I Validation II

D -Application Example

E - 2D Test-Case

F -Dimensionless Estimation

C - Results

Validation case - comparison to experimental data

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Donato Rubinetti

Appendix

A - Modeling Functions

Validation

C - Results

D -Application Example

Internal Heat Gains, Hourly

Indoor Temperatur w/o PCM

Indoor Temperatur w/ PCM

Thermostat

Wall Core Temperature

Wall Cross-Section

E - 2D Test-Case

F -Dimensionless Estimation

Komité-SN/K-034. Bygningers energiytelse, Beregning av energibehov of energiforsyning (engl.: Energy performance of buildings, calculation of energy needs and energy supply). URL:

https://www.standard.no/no/Nettbutikk/produktkatalogen/Produktpresentasjon/?ProductID=859500. 2016

500

<日 > 4 H > 4 H > 4 H > 4 H > 4 H > 4 H > 4 H > 4

Donato Rubinetti

Appendix

A - Modeling Functions

Validation

C - Result

D -Application Example

Internal Heat Ga Hourly

Indoor Temperature w/o PCM

Indoor Temperature w/ PCM

Thermostat

Wall Core Temperatur

Wall Cross-Section

E - 2D Test-Case

F -Dimensionless Estimation

D - Application Example

Indoor Temperature w/o PCM

Weather Forecast Oslo. 2018. URL: https://www.wunderground.com/weather/no/oslo

Donato Rubinetti

Appendix

A - Modeling Functions

Validation

C - Result

D -Application Example

Internal Heat Ga Hourly

Indoor Temperatur w/o PCM

Indoor Temperature w/ PCM

Thermostat

Wall Core Temperature

Wall Cross-Section

E - 2D Test-Case

F -Dimensionless Estimation

D - Application Example

Indoor Temperature w/ PCM

Weather Forecast Oslo. 2018. URL: https://www.wunderground.com/weather/no/oslo

Donato Rubinetti

Appendix

A - Modeling Functions

Validation

C - Results

D -Application Example

Internal Heat G Hourly

Indoor Temperatu w/o PCM

Indoor Temperatur w/ PCM

Thermostat

Wall Core Temperature

Wall Cross-Section

E - 2D Test-Case

F -Dimensionless Estimation

D - Application Example

Thermostat

D - Application Example

Wall Core Temperature

Operation / Day Time [h]

Wall Core Temperature

E - 2D Test-Case

F -

РСМ Donato

Rubinetti

A - Modeling

C - Results

Application

F -

E - 2D

Test-Case

РСМ

Donato Rubinetti

Application

Donato Rubinetti

Appendix

A - Modeling Functions

Validation

C - Results

D -Application Example

E - 2D Test-Case

2D Test-Case

Couplings 2D Test-ca

F -Dimensionless Estimation

E - 2D Test-Case 2D Test-Case

シック・目前 (日本)(日本)(日本)(日本)

Donato Rubinetti

Appendix

A - Modeling Functions

Validation

C - Results

D -Application Example

E - 2D Test-Case 2D Test-Case

Couplings

F -Dimensionless Estimation

Heat Transfer Liquid Phase Geometry Change $T_R > T_m$ Natura Com T_R: Boundary Temperature luid Flow T_m: Melting Temperature Heat Transfer Phase Geometry Change $T_R \gg T_m$ Natural Convection Fluid Flow

シック 単同 《川を》《川を 《四》《日》

E - 2D Test-Case

Multiphysical couplings

44

Donato Rubinetti

Appendix

A - Modeling Functions

Validation

C - Results

D -Application Example

E - 2D Test-Case 2D Test-Case Couplings 2D Test-case

F -Dimensionless Estimation

E - 2D Test-Case 2D Test-case

<ロ> <目> <目> <目> <目> <目> <目> <日> <日> <日> <日> <日> <日</p>

Donato Rubinetti

Appendix

A - Modeling Functions

Validation

C - Results

D -Application Example

E - 2D Test-Case

F -Dimensionless Estimation

Mushy Zone Investigation

Scaling Variable

Dimensionless Equations

Dimensionless Numbers

Values For Liquid Fraction

F - Dimensionless Estimation

Mushy Zone Investigation

Temperature T [°C]

Donato Rubinetti

Appendix

A - Modeling Functions

Validation

C - Results

D -Application Example

E - 2D Test-Case

F -Dimensionless Estimation

Mushy Zone Investigation

Scaling Variables

Dimensionless Equations

Dimensionless Numbers

Values For Liquid Fraction

F - Dimensionless Estimation Scaling Variables

$$\begin{split} \tilde{x} &= \frac{x}{H} & \tilde{y} &= \frac{y}{H} & \tilde{p} &= \frac{p - p_{ref}}{\rho u_0^2} \\ \tilde{t} &= \frac{u_0 t}{H} & \tilde{u} &= \frac{u}{u_0} & \tilde{T} &= \frac{T - T_{ref}}{T_R - T_{ref}} \\ \tilde{\Phi}_v &= \left(\frac{H}{u_0}\right)^2 \Phi_v & \tilde{\nabla} &= H\nabla & \frac{D}{D\tilde{t}} &= \left(\frac{H}{u_0}\right) \frac{D}{Dt} \end{split}$$

Donato Rubinetti

Appendix

A - Modeling Functions

Validation

C - Results

D -Application Example

E - 2D Test-Case

F -Dimensionless Estimation

Mushy Zone Investigation

Scaling Variable

Dimensionless Equations

Dimensionless Numbers

Values For Liquid Fraction

F - Dimensionless Estimation

Dimensionless Equations

$$\begin{split} \tilde{\nabla} \cdot \tilde{\boldsymbol{u}} &= 0 \quad (10) \\ \frac{D\tilde{\boldsymbol{u}}}{D\tilde{t}} &= -\tilde{\nabla}\tilde{\rho} + \left[\frac{\mu}{u_0\rho H}\right]\tilde{\nabla}^2\tilde{\boldsymbol{u}} - \left[\frac{g\beta(T_R - T_m)H}{u_0^2}\right]\left(\frac{\boldsymbol{g}}{g}\right)(\tilde{T} - \tilde{T}_m) \quad (11) \\ \frac{D\tilde{T}}{D\tilde{t}} &= \left[\frac{k}{u_0\rho HC_p}\right]\tilde{\nabla}^2\tilde{T} + \left[\frac{\mu u_0}{\rho HC_p(T_R - T_m)}\right]\tilde{\Phi}_v \quad (12) \end{split}$$

Donato Rubinetti

Appendix

A - Modeling Functions

Validation

C - Results

D -Application Example

E - 2D Test-Case

F -Dimensionless Estimation

Mushy Zone Investigation Scaling Variabl Dimensionless

Dimensionless Numbers

Values For Liquid Fraction

F - Dimensionless Estimation Dimensionless Numbers

heat production visc. dissipation vs heat transport by cond.

buoyant forces vs viscous forces

momentum diffusivity vs thermal diffusivity

RayleighRa = $\frac{g\beta\Delta TH^3}{\alpha\nu}$ = GrPrheat transport conv. vs cond.ReynoldsRe = $\frac{\rho u_0 H}{\mu}$ inertial vs viscous forces

 $\mathsf{Br} = \frac{\mu u_0^2}{k \Lambda T}$

 $\mathsf{Pr} = \frac{\nu}{-}$

 $Gr = \frac{g\beta\Delta TH^3}{v^2}$

Brinkman

Grashof

Prandtl

シック・目目 (日本)(日本)(日本)(日本)

Donato Rubinetti

Appendix

A - Modeling Functions

Validation

C - Results

D -Application Example

E - 2D Test-Case

F -Dimensionles Estimation

Mushy Zone Investigation

D'and a large

Equations

Dimensionles Numbers

Values For Liquid Fraction

F - Dimensionless Estimation

Values For Liquid Fraction

Dimensionless group	T _R		
	40 °C	55 °C	70 °C
$\left[\frac{\mu}{u_0\rho H}\right] = \frac{1}{\text{Re}}$	1	1	1
$\left[\frac{g\beta(T_R-T_m)H}{{u_0}^2}\right] = \frac{\mathrm{Gr}}{\mathrm{Re}^2} = \frac{\mathrm{Ra}}{\mathrm{Pr}\mathrm{Re}^2}$	266	1376	2486
$\left[\frac{k}{u_0\rho HC_p}\right] = \frac{1}{\text{RePr}}$	0.008	0.008	0.008
$\left[\frac{\mu u_0}{\rho H C_{\rho}(T_R - T_m)}\right] = \frac{Br}{RePr}$	$1.25 imes 10^{-10}$	2.42×10^{-11}	$1.34 imes10^{-11}$