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Normal Human Blood Glucose RM
J INSTITUTE

and Insulin Levels

* In healthy humans, blood glucose levels have to be maintained in a relatively narrow
range (3.5-7.0 mM, 60-130 mg/dL in fasting subjects)

* Mainly achieved by adjusting insulin levels with the 3 cells of pancreatic islets acting
as glucose sensors and releasing insulin
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Islets of Langerhans

J

Cellular aggregates of approx. 2,000 cells and
diameters of about 150 um (range: 50-500 pum)

located in the pancreas and responsible for its
endocrine (hormone releasing) function

Represent only 1-2% of the pancreas
Humans have approx. 1,000,000 islets (= 2 mL)

Four major cell types secreting different
hormones:

o cells (glucagon) [~35%, human]
| B cells (insulin) [~60% , human]
0 (somatostatin), and [~5%, human]

PP cells (pancreatic polypeptide)

There are considerable species differences

Insulin causes cells to take up glucose (from the
blood) and store it as glycogen (liver, muscle); it
also stops the use of fat as energy source

.
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o — [square wave pulse of glucose (17 mﬂ)] 150_
3 = 2
35 ke
2 > E; = st
- 5 % 100~ 1
SR D i~ phase
gf w .E 2nd
'6—‘_’ - C E h
° i =5 — ase
_ ; S ® 50 P
5 . @2
14 =
H 1
15 phase | 2" phase O_ | |
0 - 0 15
0 2 4 & 8 10 20 30 i :
time (minutes) tlme (mln)

Rorsman, P. et al. News Physiol. Sci. 2000, 15, 72

Hedeskov, C. J. Physiol. Rev. 1980, 60, 442.
(after Ma, Y. H., ..., Grodsky, G.M. et al. Eur. J. Endocrinol. 1995, 132, 370)

Schematic illustration of latency period and the two phases of insulin release. Depending on experimental
conditions, second phase of secretion may be of much longer duration than shown here.
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Outflow

® Routinely used to assess islet quality and
function

Filter (= 400 nm})

® Allows the dynamic measurement of the
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Insulin secretion

Cabrera, O. et al. Cell Transplant. 2008, 16, 1039.
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Fluid

(glucose, O,)
in

Insulin Release in
Dynamic Perifusion Model:
Geometry and Mesh
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— d=100 um
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Considering the size distribution of human islets (Buchwald, P. et al. Cell Transplant. 2009, 18, 1223),
islets with diameters d = 100 and 150 um are most representative.
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: Convection and diffusion (3X) Fluid dynamics (incompressible Navier-Stokes(convection and conduction)
%+v-(—DVc)=R—u-Vc p%—nV2u+p(u-V)u+Vp:F; V-u=0
c,: insulin; c,: glucose; c;: oxygen ] Hormone secretion and nutrient
consumption kinetics, which form the

essence of the model, are built into Rs
Parameter settings

Flow (agueous media at room temperature):
T,=310.15K, p=993 kg/m3, 7=0.7x1073 Pa-s, ¢, = 4200 J/kg/K, k.= 0.634 )/s/m/K, a = 2.1x10* K1
parabolic inflow profile on inlet 4v, (V/V,,2) (1Y/Vnax); Vin = 104 m/s

Incoming oxygen:
Catm = 0.200 mol/m3 (0.2 mM; pO, =140 mmHg; normal culture 95% air, 5% CO,; 37°C)
hypoxia: c;, = 0.036 mol/m3 (0.036 mM; pO, =25 mmHg), etc.

Incoming glucose:

incoming c,,,,. increased stepwise from 1 mM to 10-19 mM using sum of Heaviside functions

gluc

2D cross-section models with realistic geometries (islets with diameters of d = 100 and 150 um)
* Default ‘extra fine’ mesh size used (mesh sizes of 5,000-9,000 elements)
* Solved as time-dependent (transient) problem with the Pardiso direct solver
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Buchwald, P. COMSOL Conf. Boston 2010.
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Hill Function / Hill Equation

(Generalized Michaelis-Menten Kinetics)
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3 Oxygen Dynamics

Main assumptions — Oxygen
Oxygen concentrations:
Cin = Caem = 0.200 mol/m3 [140 mmHg; atmospheric, 21%]
Cissue = 0.050 mol/m3 [35 mmHg; tissue & venous = 40 mmHg]
C. = 0.130 mol/m3 [90 mmHg; arterial]

Cintlow = 0.036 mol/m3 [25 mmHg; hypoxia for perifusion]
Diffusion:

Doy = 3.0x10 m?/s (O, in water)
Doyt = 2.0x10° m?/s (O, in islet tissue)

Doxysi = 2.0x10° m?/s (O, in silicone rubber)

Oxygen consumption and cell viability:

Roxy = Rmax,oxy COXy " Do,g (Cgluc)' 5<Coxy > Ccr,oxy)
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Coxy + CHf ,0Xy

Rmaxoxy = 0-034 mol/m3/s {i.e., 0.6x10713 mol/s/IEQ} (averaged best estimate)

Chtoxy = 1.0x1072 mol/m?3 (Michaelis-Menten constant) [0.7 mmHg]

Ceroxy = 1.0x10* mol/m? (critical for survival) [0.07 mmHg]

dc) = flclhs(c,,, —1.0-10, 0.5-10"*) - COMSOL's smooth Heaviside function (step-down)

@o,4(Caiuc) Modulating factor to account for increased oxygen consumption at high glucose due to increased

metabolic demand — here, assumed to have a base component (50%) and a metabolic
component that increases in parallel with increasing insulin secretion

Buchwald, P. Theor. Biol. Med. Model. 2009, 6: 5.
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Oxygen Consumption in Mitochondria
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Fit of Hill type (generalized Michaelis-Menten) type dose response for oxygen consumption at low oxygen concentrations
by allowing a variable Hill slope. Data from Wilson, D. L et al. J. Biol. Chem. 1988, 263, 2712.
There seems to be no need for n > 1.



UNIVERSITY OF MIAMI

Islet Culture 2D Model
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Oxygen Concentrations in Nonvascularized Islets
in Traditional Culture
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Calculated oxygen concentration for three islets (with diameters ¢ =100, 150, and 200 um) in standard culture conditions as stationary

conditions are being reached (h = 1 mm assumed). The color-coded surface represents the oxygen concentration (blue corresponding to
higher and red to lower values). Areas with values below a critical value (<10~ mol-m=3), where the lack of oxygen (hypoxia) is predicted
to cause cell death (necrosis) are left uncolored (white). Because this is a 2D cross-section, it roughly corresponds to a 3D culture density

of about 1,600 IEQ/cm?. Buchwald, P. Theor. Biol. Med. Model. 2009, 5:6.
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Main assumptions — Glucose & Insulin o e
Diffusion:

D

D

D

D

= 1.5x1019 m?/s (insulin in blood)
= 0.5x1019 m?/s (insulin in islet tissue) /somewhat lowered to account for cellular release/
=9.0x1019 m?/s (glucose in blood)

= 3.0x1019 m?/s (glucose in islet tissue) /somewhat lowered to account for cellular uptake/

ins,w
ins,t
gluc,w

gluc,t

Glucose consumption:

R R

C R raxeluc = 0.028 mol/m3/s
gluc 5(C > C max,gluc

max,gluc oxy cr,oxy) = -3 3
Caiue + Crt giuc Chtgluc = 10.0x1073 mol/m?  [10 uM]

gluc —

Insulin release:

second phase -
i ins2,gluc
PRy on2 = PRusins2 Cotuc PR naxins2 = 3.0x10° mol/m3/s [~20 pg/IEQ/min]
t U Nins ,gluc Nins ,gluc . -
‘ glucz:gl CHf ,izngslz,gluc ninsz,gluc = 21 CHf,insZ,quc =7.5mM (glucose)
first phase o\
(agtlj PR o ins: = 1.5%10°5 mol/m3/s
PRins pre = PRy inst. RIS Minst gluc = 25 Cliggins1 giue = 0-01 MM/s (glucose change)
&] + CtH“;iliﬁsulc,gluc
total with oxygen modulation
Cg;:;,oxy NMins oxy = 35 Chitins oxy = 3:0%107 mol/m3 [2.1 mmHg]
I:)Rins - (PRins,phl + I:)Rins,phZ ) Mins.oxy Nins.oxy
Coxy + CHf ,ins,oxy

Buchwald, P. COMSOL Conf. Boston 2010.
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in Perifused Human Islets

General Hill-Type Concentration-Dependence
of Glucose-Induced Insulin Secretion
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Fit of Hill type (generalized Michaelis-Menten) type dose response for insulin secretion rate allowing a variable Hill slope.

Data from Henquin, J. C. et al. Diabetologia 2006, 55, 3470.
There seems to be a clear need for n > 1.
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Hill Type Concentration-Dependence

3 of Insulin Secretion on Oxygen Concentration vs.
Bilinear Version of Johnson, Colton et al. (MIT)
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Local oxygen-dependent limiting function for insulin release used in the present model compared to the simple bilinear
function used by Colton and co-workers at MIT (Johnson, A. S. et al. Chem. Eng. Sci. 2009, 64,4470).
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Calculated insulin concentration shown as color-coded from low (blue) to high (red) in two perifused islets shown at a
time-point when the glucose concentration is decreasing abruptly (from 19 mM to 3 mM, colored contour lines). Gray
streamlines and arrows illustrate the velocity field of the flowing perifusion fluid.
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3 Model-Calculated Insulin Release RESM
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Integral of Mormal total flux, ¢ [mol/{m-s)] over boundary 4
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Boundary surface integral of total insulin flux out on outlet surface as a function of time.

Fully scaled 2D cross-section of islets in a hypothetical perifusion chamber. Finite element method (COMSOL Multiphysics 3.5) used for diffusion modeling with glucose-

dependent insulin release and oxygen consumption rate. Aqueous media for flow; oxygen concentration: normal c,,, = 0.200 mol/m3 (140 mmHg); fluid flow: v,, =
1.0x10* m/s; extra fine mesh, Pardiso direct solver, transient solution.
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Boundary surface integral of total insulin flux out on outlet surface as a function of time.

Fully scaled 2D cross-section of islets in a hypothetical perifusion chamber. Finite element method (COMSOL Multiphysics 3.5) used for diffusion modeling with glucose-
dependent insulin release and oxygen consumption rate. Aqueous media for flow; oxygen concentration: normal c,,, = 0.200 mol/m3 (140 mmHg); fluid flow: v,, =
1.0x10* m/s; extra fine mesh, Pardiso direct solver, transient solution.

Experimental data from Dufrane, D. et al. Diabetes Metabol. 2007, 33, 430.
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3 Insulin Release in Dynamic Perifusion Model
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Calculated insulin concentration shown as color-coded from low (blue) to high (red) in two perifused islets shown at
changing glucose concentrations (increasing stepwise from 3 mM to 19 mM than decreasing back to 3 mM, colored

contour lines). Gray streamlines and arrows illustrate the velocity field of the flowing perifusion fluid.
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Insulin Concentration
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Calculated concentrations shown color-coded in two perifused islets at a time-point when the glucose concentration is

decreasing abruptly (from 19 mM to 3 mM, colored contour lines).
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Integral of Mormal total flux, ¢ [mol/{m-s)] over boundary 4
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Experimental vs. predicted fraction
of insulin secretion rate (F...) at
hypoxic conditions.

Boundary surface integral of total insulin flux out on outlet surface as a function of time.

Fully scaled 2D cross-section of islets in a hypothetical perifusion chamber. Finite element method (COMSOL Multiphysics 3.5) used for diffusion modeling with glucose-
dependent insulin release and oxygen consumption rate. Aqueous media for flow; oxygen concentration: normal c,,,, = 0.200 mol/m3 (140 mmHg); fluid flow: v,, =

1.0x10* m/s; extra fine mesh, Pardiso direct solver, transient solution.
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Insulin Concentration

Glucose-Insulin(-Oxygen) Perifusion Model
at Hypoxia
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Calculated concentrations shown color-coded in two perifused islets at a time-point when the glucose concentration is

decreasing abruptly (from 19 mM to 3 mM, colored contour lines).



UNIVERSITY OF MIAMI

J

A. pO, =140 mmHg
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Local insulin concentration (as height data) colored by local oxygen concentration during a change in the perifusing

glucose concentration (contour plot).

Fully scaled 2D cross-section of islets in a hypothetical perifusion chamber. Normal oxygen concentration c,, = ¢,;,, =0.200 mol/m?3 (140 mmHg) (A), hypoxic oxygen

concentration ¢, =0.036 mol/m3 (25 mmHg) (B); fluid flow: v,, = 1.0x10** m/s (0.1 mL/min).
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Local insulin concentration (as height data) colored by local insulin production during changing perifusing glucose
concentrations (contour plot).

Fully scaled 2D cross-section of islets in a hypothetical perifusion chamber. Normal oxygen concentration c,,,, = 0.200 mol/m? (140 mmHg); fluid flow: v;, = 1.0x10* m/s.
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Local insulin concentration (as height data) colored by local insulin production during changing perifusing glucose

concentrations (contour plot).
Fully scaled 2D cross-section of islets in a hypothetical perifusion chamber. Normal oxygen concentration c,,,, = 0.036 mol/m3 (25 mmHg); fluid flow: v;, = 1.0x10"* m/s.
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2 Exploratory insulin secretion model for avascular pancreatic islets
has been implemented using Hill-type sigmoid response functions

2 Model was parameterized to fit experimental data and good fit
could be obtained both for glucose- and for oxygen-dependence
(except time-scale of first-phase release)

2 With COMSOL Multiphysics it is relatively straightforward

o to couple arbitrarily complex hormone secretion and nutrient
consumption kinetics with diffusive and even convective transport and

o run simulations with realistic geometries without symmetry or other
restrictions

problems that seriously limited previous glucose—insulin modeling

attempts
COoOMSOL .
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