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Overview:  The LLNL DTEM is a nanosecond-scale 

in situ TEM with single-shot capability 

DTEM adds two lasers to a 
conventional TEM to enable: 

 Driving sample events with 
extreme spatiotemporal 
temperature gradients 

 Real-space imaging and 
diffraction with ~15 ns 
exposures 

 Enough signal in one exposure 
to form a complete image (up to 
2x109 electrons) 

Laser-pulse 
driven 

photoelectron 
cathode 

Sample location 

Cathode drive laser  

Nd:YLF 
(5w) l = 211nm 

10 ns FWHM pulse width 

Sample drive laser 
Nd:YAG 

l= 1064nm or 355nm 
12 ns FWHM pulse width 

Sample begins reacting! 

e-s 

Probe 
e-s 

e-s 

DTEM's single-shot approach lets you capture 

unique, irreversible events on the nm and ns scale 
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Scientific Context:  DTEM enables applications in 

physics, materials science, chemistry, and biology 

Structural  Materials 

• Diffusionless phase 

transformations 

(martensites)  

• Dislocation dynamics 

nucleation/ 

interactions 

 

Solid State Reactions Catalytic Reactions Biological Processes 

• Nanowire and 

nanoparticle growth 

• Catalyst/substrate 

interactions in 

gaseous and liquid 

environments 

-phase 

-phase 

Lens 

shaped     

 grains 

 

 

 

• Dynamics of cellular   

modification in the 

presence of toxins  

• Pathogen 

identification 

• Radiation damage in 

organic molecules 
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50 mm 

14.6 ms after drive initiation 

Electron 
Pulse 

• Reactive Multilayer  

Foils (RMLF) 

• Small scale diffusional 

transformations in 

thin films (electrical 

devices)  

 



4 

Lawrence Livermore National Laboratory 

LLNL-PRES-458677 

Current DTEM performance enables 15 ns 

diffraction contrast imaging. 

Conventional TEM image:   

1 s exposure 

Stacking  
Fault 

Dislocations 

Pulsed image 2008: 

15 ns, 1x109 e-/pulse  

Pulsed Image 2005:  

1x106 e-/pulse 

The latest upgrades enable images of dislocations, stacking faults, and 

other microstructural features in a single 15 ns exposure. 

Previously, these features could have only been seen by accumulating a 

large number of pulses.  
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Quantitative interpretation of DTEM experiments 

requires an understanding of laser-material interaction 

Two aspects: 
 Laser absorption 

• Polarized light incident at an angle 
onto nanostructured materials 

• Spatial distribution of absorption is 
important and complicated 

 Heat diffusion 
• Normal direction (~100 nm) is a 

fast (few ns) 1D problem 
• Transverse direction (~50 µm) is a 

slow (many µs) 2D problem 
• Transformations and reactions are 

a nonlinear heat source/sink 
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Laser absorption is calculated in a 

3D scattered-wave formalism 

 User specifies wavelength, complex vector 
polarization, incident angle, geometry, and 
complex e(w) for each material 

 This example is 1 µm diameter, 85 nm thick 
Ge2Sb2Te5 on a 50 nm Si3N4 membrane hit 
with 1.06 µm p-polarized light at 42.5o 

 Standard single-frequency scattered-wave 
formalism with perfectly matched layers and 
scattering boundary conditions 

 Direct PARDISO solver is fast, stable, 
memory-hungry 

 Validated against analytical solutions for 
planar thin-film stacks 

 Volumetric absorption can couple directly 
into subsequent heat diffusion simulations 
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Laser absorption shows interesting three-

dimensional polarization/wavelength dependence 

1.06 µm P-polarized 532 nm S-polarized 

532 nm P-polarized 

Example is a 0.8 µm disk 
Plots show absorbed 

power density 
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There is also a strong size dependence 

for diameters much less than l 

Absorption profile halfway through the 
thickness of the disk for 1.06 µm light 

200nm 
400nm 600nm 800nm 1 µm 
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Experiments show absorption to be very inhomogeneous, and 

this affects phase transformations and morphology evolution 

 Experiments show certain spots around the edges 
consistently melt long before the rest of the material gets hot 

 Once laser shuts off (at t ~ 12 ns), the heat can diffuse and 
equalize—but the damage is already done 

Before During (t = 4 ns) After 

Collaboration with S. Meister and Y. Cui, Stanford 
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DTEM can also track solid-liquid phase 

transformation fronts 

 DTEM captures rapid lateral solidification front moving 
at ~3.5 m/s near edge of an elliptical laser spot 

 Microstructural evolution is of interest and depends on 
nonlinear nonequilibrium dynamics at the front 

Collaboration with A. Kulovits and J. Wiezorek, U. Pitt. 

Nanocrystalline 

Microcrystalline 

Liquid 

Before During After 

Liquid 
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Heat of transformation creates nonlinearity that 

can be handled within an enthalpy formalism 

 Computer solves directly for enthalpy 
density, not temperature 

 Defined functions calculate the actual 
temperature and phase fractions in post-
processing 

 Essence of the method is in an appropriate 
nonlinear enthalpy-dependent diffusivity 

 Smoothed corners and artificial diffusivity 
in mixed-phase regions stabilize the 
solution 

 Fifth-order finite elements provide high 
precision while keeping reasonable 
computational costs 

 A practical compromise:  Simpler than 
phase field, but neglects kinetics 

Enthalpy 
Density 

Phase Fraction 

Diffusivity 

Solid 

Liquid 

Tmelt 

DHf per volume 
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Simulation quantitatively predicts anisotropic collapse of 

mixed-phase region followed by slow resolidification 

Color scale = Temperature 

 

Contours = Boundaries of 
mixed-phase region 
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Simulation quantitatively predicts anisotropic collapse of 

mixed-phase region followed by slow resolidification 

Color scale = Temperature 

 

Contours = Boundaries of 
mixed-phase region 
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Summary 

 We have a TEM that can perform single-shot in situ experiments 
on the scale of nanometers and nanoseconds 
• Example applications include chemical reactions and phase 

transformations 
• Reveals transient material structures that couldn’t be seen 

any other way 
 Understanding experimental results depends on understanding 

laser-material interactions 
 Simulations provide handle on two important aspects of this 

• Geometrical effects in laser absorption 
• Nonlinear heat flow coupled with transformations 




