Using the Time Parameter as the Third Geometrical Dimension

<u>Overview</u>

- Background
- Theory
- Application in Comsol Multiphysics
- Results
- Conclusion

Background

Problem description

- Detailed Cross Section
- Complex Model (Multiphysical Model)
- Necessary to modify imported Geometry?
- Possible to save Calculation Memory?
- Possible to save Simulation Time?

Theory

 $Q = c \cdot m \cdot \Delta T$

 $Q = c \cdot \rho \cdot V \cdot \Delta T = c \cdot \rho \cdot A \cdot \Delta z \cdot \Delta T$

Introducing time parameter *t*:

$$P = \frac{dQ}{dt} = \frac{c \cdot \rho \cdot A \cdot \Delta z \cdot \Delta T}{dt}$$

$$P = c \cdot \rho \cdot A \cdot \Delta T \frac{\Delta z}{dt}$$

Distance *z* and time *t* are proportional:

 $dt = \frac{1}{v}dz$

2D 3D

An Application in Comsol: A cooling water loop

Case 1: Loop

Application: Ground Source Heat Pump

Case 2: Pipe-in-pipe

Application : Bore Hole Heat Exchanger

An Application in Comsol

Thermal properties

Part	k [W/K∙m]	c _p [J/kg∙K]	ρ [kg/m ³]	T _{boundary} [℃]
Ground	1	1000	1000	0
Steel tube	50	1000	8000	N/A
Water	1000	4200	1000	30

Dimensions

Dimension	Value
Depth under ground surface	1m
Length	10m
Inner diameter	10cm
Water cross section	ca. 80cm ²
For loop arrangement: Distance between tubes.	2m
For tube-in-tube arrangement: Inner tube material thickness.	1cm

Simulation Results: Loop

Simulation Results: Pipe-in-pipe

Simulation Results: Pipe-in-pipe

Simulation Results: Pipe-in-pipe

Simulation Results: Overview

Water speed	Model	T _{outlet water} [°C]	<i>P</i> by ΔT [W]	P by heat flux through surface [W]	
1mm/s	3D	9.5	676	600	Loop
	2D	9.3	682	N/A	1-
10mm/s	3D	26.6	1120	1100	
	2D	26.6	1120	N/A	

Water speed	Model	T _{outlet water} [°C]	<i>P</i> by ΔT [W]	P by heat flux through surface [W]	
1mm/0	3D	28.8	40	278	Pipe-in
1 IIIII/S	2D	N/A	N/A	N/A	-pipe
10mm/s	3D	28.62	455	426	
	2D	28.9	363	N/A	
100mm/s	3D	29.79	690	713	
	2D	29.8	660	N/A	

Simulation Results: Temperature profiles

Loop

Simulation Results: Loop reviewed

Simulation Results: Pipe-in-pipe reviewed

Simulation performance

Model	Simulation time	Memory
2D Models	$0.7s(8s)^*$	130MB (277MB)* UMFPACK
3D Models	54 s	687MB

* Worse values for pipe-in-pipe model due to more time steps

Conclusions

- New Model confirms the theory
- Model is feasible in Comsol Multiphysics
- Works for non-linear variations
- Better Convergence
- Faster (~10x)
- Less Memory Usage (~ 20%)

but:

- User has to know how to do (we know it)
- Model has to be tuned
- In special cases small time steps needed

