# On The Purification Of Waste Waters Using Multi–Bore Filters: Simulation of a Long-Term Filtration Stage

#### I. Borsi

Dipartimento di Matematica *U. Dini*, Università di Firenze (Italy) borsi@math.unifi.it – http://web.math.unifi.it/users/borsi

COMSOL Conference 2010 Paris, November 17 – 19, 2010





#### Introduction

#### Project **PURIFAST**

Advanced **PUR**ification Of Industrial And Mixed Wastewater By Combined Membrane Filtration **A**nd **S**onochemical **T**echnologies



#### LIFE +

Environmental Policy and Governance Grant agreement n. LIFE07 ENV/IT/000439 Duration: January 2009 – December 2011



#### Partnership:

- Coordinator: Next Technology Tecnotessile (Italy)
- Research and Technical activities:
   University of Florence Dep. of Civil Engineering (Italy)
   University of Florence Dep. of Mathematics (Italy)
   IWW GmbH (Germany)
- Manufactures industries:
   Lavo (Italy) Polymem SA (France) Inge AG (Germany)
- End-users industries: Gestione Impianti Depurazione Acque S.p.A. (Italy) King Colour S.p.A. (Italy)





#### Introduction

#### Final goal of the project:

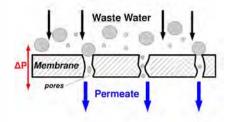
Demonstration of a tertiary treatment system based on ultrafiltration and sonochemical technologies for purification and reuse of textile and mixed effluents.

## Main tasks of our activity in the project

- 1. Modelling and simulation of filtration process at the meso-scale (i.e. single filter module)
- 2. Optimization of the parameters at the macro-scale (i.e. filtering plant)

Two filtering devices (based on polymeric membranes)

- ► Hollow fibre
- Multi-bore

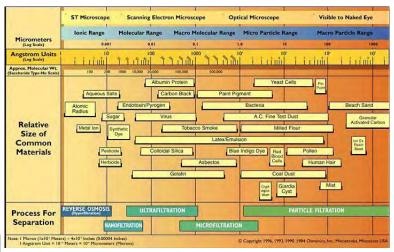







#### How the membrane works

- ▶ We deal with an **ultrafiltration** process: pores diameter  $0.01 0.1 \ \mu m$
- ▶ A pressure gradient  $\Delta P$  is applied.
- All the particles larger than the pore diameter are cut off.



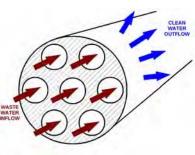





# How the membrane works (ctd.)

#### Which materials can be removed:






# How the membrane works (ctd.)

Different membrane's arrangements (some example): plane, hollow fibre, spiral wound.
We are dealing with a particular hollow fibre: multi-bore fibre









# How the membrane works (ctd.)

## **Fouling**

The main problem in these filtering systems is the membrane **fouling**. Actually, we have two different fouling processes:

- Reversible fouling: some of the particles attach on the membrane outer surface, soiling it and eventually reducing the filtration efficiency. To clean the membrane surface, a periodic back wash is imposed: the water flux is inverted and the clean water (partially) removes the fouling.
- 2. **Irreversible fouling**: the one due to the *adsorption* of matter within the membrane pores. It cannot be removed at all!





# The pilot plant within the project PURIFAST

The pilot consists of 3 **modules**: everyone houses **7 multi-bore fibres**.







# Modelling a multi-bore module (macroscopic scale)

The approach of "coupled porous regions" (three-porosity, three-permeability medium)

We identify three regions:

- ► The capillary region: the total space occupied by the lumina of the capillaries within each fibre.
- ➤ The membrane region: the total space occupied by the membrane of each fibre.
- ▶ The shell region: the external space between the fibres.

These media are coupled each other by means of a spatially dependent source/sink term in the mass balance equation.

(Ref: Labecki et al., Chem. Eng. Sci., 1995).







## Model definition: general considerations

#### Physical assumptions:

- Saturated porous media.
- ▶ Typical Reynolds number:  $Re < 5 \Longrightarrow Darcy's law applies$ .
- Only one chemical species (for the sake of simplicity).
- ▶ In shell and capillary region permeability and porosity are constant. Conversely, porosity and permeability of the membrane depend on pollutant concentration.



# Model definition: general considerations (ctd.)

#### Remarks

- 1. We first considered the full 3D model, and we solved it with COMSOL Multiphysics
- 2. For a realistic simulation we have to run a long series of filtration/backwash cycles. For instance: 5 days ~ 450 cycles.
- 3. A 3D simulation of such process is very time consuming. For instance: using also a simplified 2D simulation of just, 1 cycle takes  $\sim 5$  min.
- 4. Actually, the dependence of the solution upon the horizontal (or radial) coordinates is significant **only very close to the outlet**.

#### Therefore:

To reduce the simulation time, we average the model w.r.t. the borizontal coordinates  $\Rightarrow$  1-D setting of the problem.





# Modelling the hydrodynamics

#### Subscripts notation:

- $(\cdot)_c$  is referred to the capillary region.
- $(\cdot)_m$  is referred to the membrane region.
- $(\cdot)$  is referred to the shell region.

**Steady-state mass conservation** (with constant fluid density,  $\rho$ ):

$$\frac{\partial}{\partial z}q_c = -\Gamma_c,\tag{1}$$

$$\frac{\partial}{\partial z}q_m = \Gamma_c - \Gamma,\tag{2}$$

$$\frac{\partial}{\partial z}q = \Gamma - \frac{1}{\pi R^2} \frac{Q}{A_{out}} \chi(z) (2\pi R_{out})$$
 (3)

where: q is the superficial velocity (specific discharge) and  $\Gamma_c$ ,  $\Gamma$  are the source/sink terms (= mass exchange between regions).

The second term in the r.h.s. of (3) accounts for the water flowing out from the outlet:  $A_{out}$ ,  $R_{out}$  are the area and radius of the outlet. Q is the volumetric flux.  $\chi(z)$  is the characteristic function of the outlet position.

# Modelling the hydrodynamics (ctd.)

The porous regions are characterized as follows:

- 1. Porosity and permeability in capillary and shell region: they are calculated as a function of the structural parameters (inner and outer radius of the fibre, module radius, etc.). Such functions are assumed as constitutive laws (*Poiseuille*, *Happel*, etc.)
- 2. **Membrane porosity and permeability** ( $\varepsilon_m$  and  $k_m$ ): they are function of the pollutant concentration (see later on).





# Modelling the hydrodynamics (ctd.)

Darcy' law to express the velocity field:

$$\begin{aligned} q_c &= -\frac{k_c}{\mu} \left( \frac{\partial P_c}{\partial z} - \rho g \right), \\ q_m &= -\frac{k_m}{\mu} \left( \frac{\partial P_m}{\partial z} - \rho g \right), \\ q &= -\frac{k}{\mu} \left( \frac{\partial P}{\partial z} - \rho g \right), \end{aligned}$$

where P are the pressures,  $\rho,\mu$  are the water density and viscosity (assumed constant), g is the gravity acceleration.





## Modelling the pollutant transport and attachment

#### **Definitions:**

- 1. *c* is the pollutant concentration in the volume of water **flowing** through the capillary region.
- 2.  $c_p$  is the mass fraction of **adsorbed** pollutant (on the membrane)
- 3.  $c_m$  is the concentration of matter **attached** on the inner part of the membrane's capillaries.

The pollutant transport takes place in the capillaries: therefore, the eq.s are coupled with the hydrodynamics of the capillaries region.

FASTWhere  $\gamma$  is the attachment coefficient.





# Modelling the mass exchange: the attachment effect

The sink/source terms are defined as follows:

$$\Gamma_c = \alpha_c \frac{k_m}{\mu I} \left( P_c - P_m \right), \tag{4}$$

$$\Gamma = \alpha \frac{k_m}{\mu l} (P_m - P), \qquad (5)$$

 $\alpha_c$  and  $\alpha$  are filtering efficiency coefficients ( $[\alpha_c] = [\alpha] = L^{-1}$ ):

$$\alpha = \frac{\text{External surface of the membrane}}{\text{Volume of the shell}}.$$
 (6)

The efficiency of the inner part decreases due to the pollutant soiling the membrane:

$$\alpha_c = \alpha_c(c_m) = A_v \frac{1}{1 + c_m/c_{ref}},\tag{7}$$

where  $c_m$  is the concentration of the attached particles.  $c_m = c_m = c_m$ 





## Adsorption and its effect on pores diameter

We assume there is an equilibrium relationship between c and the mass fraction of adsorbed pollutant (p.u. mass of the membrane),  $c_m$ :

$$c_p = \frac{\overline{s}K_Lc}{1 + K_Lc}$$

which is the well-known *Langmuir* adsorption isotherm ( $K_L$  and  $\bar{s}$  are constant).

The mass fraction  $c_p$  is proportional to the volume occupied into the pores. Assuming a capillary tubes structure:

$$c_p(x,t) = \eta \left(d_0^2 - d(x,t)\right)$$

with  $\eta$  constant.





# The effects on porosity and permeability

We assume a **Poiseuille-type** law:

$$\varepsilon_m(x,t) = \frac{N_p \pi}{4 A_{filt}} d^2(x,t)$$
 (8)

$$k_m = \varepsilon_m(x, t)d^2(x, t) \tag{9}$$

where  $N_p = \sharp$  pores and  $A_{filt}$  is the filtering area.

If in (8) and (9) we use the dependence of d upon the adsorbed pollutant, we get the variation of porosity and permeability due to the adsorption.

The back wash has no effect on this process: the value of  $\varepsilon_m$  and  $k_m$  before and after backwashing are the same ( $\Rightarrow$  irreversible fouling!)





# Boundary and initial conditions

#### B.C.

We assume a **no flux condition** with the following exception:

1. **On the inlet**, in the capillary region: **inward flux** for the flow and **assigned concentration** (Dirichelet) for the pollutant:

$$q_c = Q/A, \qquad c = c_{in}$$

#### I.C.

The apparatus measures the pressure at inlet and outlet. Therefore:

- 1. **In the capillary region**: pressure in the hydrostatic equilibrium with the inlet.
- 2. **In the shell region**: pressure in the hydrostatic equilibrium with: the outlet.
- 3. In the membrane: an average of the two.
- ▶ The initial concentrations are set to zero.





# The complete system

$$\begin{split} -k_{c} \frac{\partial^{2} P_{c}}{\partial z^{2}} &= -\alpha_{c}(c_{m}) \frac{k_{m}(c_{p})}{I} \left( P_{c} - P_{m} \right) \\ -k_{m}(c_{p}) \frac{\partial^{2} P_{m}}{\partial z^{2}} &= \alpha_{c}(c_{m}) \frac{k_{m}(c_{p})}{I} \left( P_{c} - P_{m} \right) - \alpha \frac{k_{m}(c_{p})}{I} \left( P_{m} - P \right) \\ -k_{z} \frac{\partial^{2} P}{\partial z^{2}} &= \alpha \frac{k_{m}(c_{p})}{I} \left( P_{m} - P \right) - \frac{\mu}{\pi R^{2}} \frac{Q}{A_{out}} \chi(z) (2R_{out}) \\ \left( \varepsilon_{c} + \rho_{b} \frac{\partial c_{p}}{\partial c} \frac{\partial c}{\partial t} \right) + \frac{\partial (cq_{c})}{\partial z} &= \varepsilon_{c} D \frac{\partial^{2} c}{\partial z^{2}} - \gamma \left[ \alpha_{c}(c_{m}) \frac{k_{m}(c_{p})}{\mu I} \left( P_{c} - P_{m} \right) \right] \left( \varepsilon_{c} c \right) \\ \frac{\partial c_{m}}{\partial t} &= \gamma \left[ \alpha_{c}(c_{m}) \frac{k_{m}(c_{p})}{\mu I} \left( P_{c} - P_{m} \right) \right] \left( \varepsilon_{s} c \right) \\ c_{p} &= \frac{\bar{s} K_{L} c}{1 + K_{L} c}; \quad \alpha_{c}(c_{m}) = A_{V} \frac{1}{1 + c_{m}/c_{0}}. \end{split}$$

REMARK: A similar sytem has been defined for the back wash stage.





## Use of COMSOL Multiphysics

The system was solved separating the two stages of the process (i.e the filtration and the back wash step, respectively).

## For each stage we applied the following:

- 1. The *Darcy's law Pressure* (*Earth Science Module*), to solve the pressure eq.s
- 2. The Solute Transport mode (Earth Science Module) to solve the eq. for c, selecting the Langmuir adsorption model. The attachment term is included in the source option.
- 3. The *Diffusion mode* to solve eq. for  $c_m$  [with a vanishing diffusion coefficient, since actually is a ODE !!]
- 4. In the *Global Expressions* we included the expression for  $\Gamma$ ,  $\Gamma_c$ ,  $\alpha_c$ ,  $\varepsilon_m$  and  $k_m$ .





#### **Simulations**

Actually, the filtration module has 2 inlet options: bottom and top. Therefore, we have **four steps**:

- (A) Filtration 1: the waste water enters from the **bottom**.
- (B) Back wash 1: the clean water enters from the outlet and exits from the **bottom** .
- (C) Filtration 2: the waste water enters from the inlet at the **top**.
- (D) Back wash 2: the clean water enters from the outlet and exits from the inlet at the **top**.





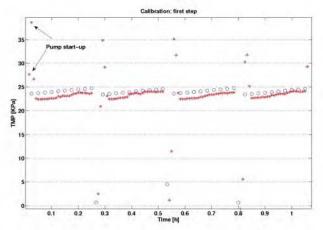
# $MATLAB^{\mathbb{R}} + COMSOL^{\mathbb{R}}$ simulation

We provided a MATLAB simulation code.

#### The main steps of our work:

- ▶ Once a single-cycle simulation has been performed using the COMSOL User Interface, we derived from it the four specialized MATLAB-functions (one for each step of the process).
- ▶ In a main file we give all the needed input data.
- ► From the main file, the 4 functions (in the right order) are called iteratevely, launching at each time the COMSOL solver algorithm.
- ► The final value of the concentrations are the initial values for next step.



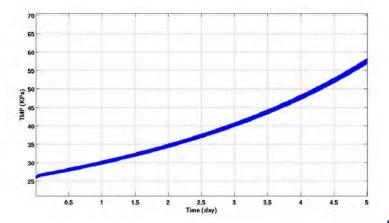





## Example 1: calibration on a short period

An example of 1 hour process (= 4 cycles).

Red: data; Blue: simulation.








## Example 2: a long term simulation

After the calibration we run a 5-day simulation (225 *cycles*). We obtain a good qualitative behaviour.







#### Conclusions

#### Remarks

- ▶ The 1D problem allows to easily simulate a process of several days. due to the faster procedure: e.g. a 5-day simulation (=225 cycles)  $\sim 2.05 \ hours$
- ► The introduction of the porosity and permeability variation allows to recover the behaviour of the experimental curves



