油基钻屑螺纹推进式换热器流动传热特性 赵飞¹,李艳霞¹,刘中良^{1*},密夫林²,高立青²,李清方³,庞会中³ (¹北京工业大学教育部强化传热与过程节能重点实验室,北京 100124;2江汉油田分公司清河采油厂,山东潍坊 262714;3中石 化节能环保工程科技有限公司, 武汉 430223) (*通讯作者: liuzl@bjut.edu.cn,15838104755@163.com)

简介

在石油开采过程中会产生很多的废料残渣,油基钻屑就是其 中的一种。油基钻屑含有多种国家明文规定的有毒废弃物,不能 直接排放以避免对环境造成污染。因此针对油基钻屑的特性,本 文提出一种螺纹推进式换热器用以对油基钻屑进行热解处理。图 1是螺纹推进式换热器的几何模型。螺纹管内的流动介质为高温 烟气,螺纹管与外套管之间为油基钻屑流通通道,烟气与油基钻 屑流动逆流布置。三根完全相同的周向排列的螺纹管缠绕在内套 管上, 螺纹(内套管)以一定的转速旋转(旋转方向与钻屑前进 方向一致)以推动油基钻屑流动。该换热器具有以下两个特点: 1) 空心螺纹缠绕在内套管上并且加以旋转, 从而有效提高油基

结果:

图5是螺纹转速对油基钻屑流动传热特性的影响。从图中可以看 出,随着转速的增加,油基钻屑的出口速度和压差均增加。转速0.5 rad/s时钻屑出口速度比0.1 rad/s时增加了8.3%,而压差增加了70.5%。 这一方面是因为按照流体动力学理论,压力损失与速度的平方成正比, 另一方面是因为随着转速的增大,螺纹表面相对于钻屑的相对运动速 度加大、扰动作用更加明显。另外、随着转速的增加、钻屑出口温度 和换热器的总传热系数均呈增大趋势。0.5 rad/s时钻屑的出口温度和 总传热系数比转速0.1 rad/s时分别增大了4.9%和11.6%。

计算方法

由于热解终温对油基钻屑热解程度的影响最大,因此数值计算 时,边界条件的设置如下:入口为速度入口,参照设计要求,烟气入 口速度42.4 m/s,入口温度800℃,油基钻屑入口速度为0.024 m/s, 入口温度150℃,出口采用自由出流。螺纹(内套管)旋转转速以 0.1rad/s为梯度,对转速为0.1至0.5rad/s的五种情况进行模拟。壳体 及内套管壁面均设置为无滑移的绝热壁面。压力和速度的耦合采用 SIMPLE 算法,考虑到在近壁面等低雷诺数区域RNGK-E湍流模型能够 更准确的反应流动状况从而提高模拟准确性,所以湍流模型选用 RNGK-ε模型。

以表1所列的五种不同截面形状的螺纹推进式换热器为例研究螺 纹不同截面形状对油基钻屑流动换热性能的影响。在这里,保证螺纹 截面面积和换热器总壳长不变,因此截面形状的改变将导致其曲率比 和流动换热面积发生变化。图6是Re和曲率比对油基钻屑Nu的影响。 在螺杆转速相同情况下,当雷诺数Re较小 (<250)时,Nu随雷诺数 增大而迅速增大; 当雷诺数Re超过某一数值(>250)时, 这一增大 趋势迅速变缓,基本上与雷诺数Re无关。此外,Nu随曲率比d_i/D增 大而增大。

表 1 不同螺纹截面形状的主要几何参数

截面形状	螺纹曲率	螺纹当量	曲率直径	总换热面	螺距	国粘
	直径D(mm)	直径d _i (mm)	比 d_i/D	积(m ²)	(mm)	团奴

模型验证

1) 以图1所示模型为例进行网格无关性验证。对5套不同网格数 下的同一进行工况进行了模拟计算。图2给出了网格独立性检验结果。 由图可以看出随着网格数的增加,出口速度与出口温度这2个参数的 变化幅度越来越小。实际上将网格3与网格5的结果对比发现,尽管网 格数增加了近100%,但钻屑出口速度和温度均变化不足5%,考虑到 计算机资源速度,选定网格4即747305为计算网格。

2) 与实验结果对比。利用文献[1]中螺纹转速为零(静止)时冷 (壳侧、层流) 热(管侧、湍流) 水流经螺纹缠绕式换热器的流动传 热情况进行模拟分析,并且与实验结果进行对比。图3是文献实验模 型。利用本文所采用的计算方法在文献所示工况下进行数值计算。如 图4将数值计算得到的管侧Nug、壳侧Nuz与实验数据进行对比。误 差分析得到计算模型与实验结果相较平均误差分别为8.7%和8.9%,均 在工程允许误差范围内。因此本文建立层流模型计算壳侧流体、 RNGK-ε湍流模型计算管侧流体是可行的。

圆形	625.766	100.93	0.1613	6.2917	600	9.17
梯形	621.902	117.34	0.1887	5.7142	600	9.17
正方形	608.226	119.26	0.1961	4.7114	600	9.17
长方形	591.726	126.98	0.2146	4.2582	600	9.17
拱形	585.296	132.42	0.2262	4.1492	600	9.17

为了给工程设计提供便利,根据以上模拟结果回归得 到了油基钻屑在250<Re<1800、0.1613<di/D<0.2262范围流 动换热关系式。结果如下:

 $Nu = 36.67 \frac{a_i}{-1} + 0.067$ (1)拟合度R2因子为0.9768, 相对平均偏差为1.2%。

1) 螺纹转速对油基钻屑在螺纹推进式换热器内的流动有很大 影响。随着螺纹转速的增大,油基钻屑出口速度、温度、进出口压差。 以及换热器的总传热系数均增大。因此工业设计时需要在安全压差范 围内增大转速有利于提高换热能力。

2) 由于油基钻屑的Pr很大,因此油基钻屑的流动始终属于层 流,并且其层流热入口段影响不可忽略。当Re较小时,Nu随Re增加 而增加,且这一趋势在Re较小时更加明显;此外Nu与曲率比成正比。

参考文献:

N. Jamshidi, M. Farhadi, D.D. Ganji, K. Sedighi. Experimental analysis of heat transfer enhancement in shell and helical tube heat exchangers[J]. Applied Thermal Engineering,2013,51(1-2)

Excerpt from the Proceedings of the 2019 COMSOL Conference in Beijing