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Abstract
Ultrasound technology is deployed in a variety of scien-
tific and engineering applications predominantly in liquid
media. The use of ultrasound in gaseous environments
has not yet reached the same level of maturity - especially
in the context of industrial measurements. The present
study focuses on fundamental investigation of propaga-
tion properties of airborne acoustic waves and their inter-
action with solids. For this purpose, the scattering behav-
ior of ultrasonic waves from rigid spheres is examined.
Four different sphere radii a are studied, being 0.001,
0.1, 1 and 100 times the wavelength λ . The geometry
is a 2D-axisymmetric enclosure with the sphere placed
in the center of the z− axis. The model is based on the
Convected Wave Equation, Time Explicit interface which
features the discontinuous Galerkin method to solve the
set of linearized Euler equations due to its capability to
handle large-distance propagation problems in a memory-
efficient way. To verify the results, the simulations are
compared with an analytical model for rigid scattering
from a sphere. In addition, a mesh convergence asses-
ment was performed. Analytical and numerical results
show perfect agreement laying the groundwork for im-
proved acoustic simulations that include loss mechanisms.
Keywords: Acoustics, Scattering, discontinuous Galerkin,
Ultrasound

1 Introduction
In nature, ultrasound is a rare occurrence. Only a few ani-
mals use ultrasound to scan their surroundings or to trans-
mit information, such as bats and whales. Nonetheless,
ultrasound has become wide-spread and well-established
in scientific and engineering applications. The application
spectrum of ultrasound technology ranges from the har-
vesting of nanometer particles up to the stirring of molten
metal (Rubinetti and Weiss, 2018a,b), including the capa-
bility of triggering a physical process in a non-intrusive
and non-destructive fashion. As of today, ultrasound is a
mature technique predominantly in liquid and solid me-
dia. In gaseous environments, ultrasound technology has
not yet reached the same level of industrial importance.
In this study, the objective is to conceive a verifiable test-
case for acoustic scattering in air from a rigid sphere. The

novelty of this study is the use of the Convected Wave
Equation (CWE) interface that is based on the discontin-
uous Galerkin (dG) method, which provides a memory-
efficient approach for solving propagation problems of ul-
trasonic waves.

2 Physical Model
CWE is in principle an interface to model the propaga-
tion of ultrasound over large distances, i.e. distances large
compared to the wavelength λ . However, this study tack-
les the challenging task to model acoustic scattering with
CWE in the time-explicit domain.

2.1 Scattering regimes
When it comes to acoustic scattering, four different
regimes exist as shown in Figure 1.
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Figure 1. Schematic drawing of the range of validity for the four
different scattering regimes, geometric acoustics, Mie, Rayleigh
and negligible scattering.

Geometric acoustics, or ray acoustics, holds when the
scattering obstacle is large compared to the wavelength.
Mie scattering is the case when λ and the sphere radius
a are comparable. In the Rayleigh regime a < λ acous-
tic scattering is characterized by an elastic reflection of
incoming waves while for smallest sphere the scattered
pressure is vanishingly small.

2.2 Plane wave scattering
As benchmark model this study uses the case of acoustic
scattering of a plane wave from a rigid sphere. Despite
its simplicity, plane wave scattering continues to attract
the attention of researchers (Adam, 2017). An important



parameter to characterize scattering phenomena is the di-
mensionless wave number ka

ka =
2π

λ
a (1)

where λ = c/ f with c = 343 ms−1 being the speed of
sound in air and f being the frequency. Ultrasonic fre-
quencies, as of interest in this work, start from 20 kHz and
reach up to several Megahertz.

Mathematically, acoustic scattering of an incident plane
wave from a rigid sphere is a well-studied problem (Weser
et al., 2013, 2014). It has been thoroughly analyzed in the
time-harmonic domain where the acoustic field variables
oscillate sinusoidally in time. Figure 2 illustrates the sys-
tem sketch in spherical coordinates with the incident plane
wave

pinc(r,θ) = pa · eikrcos(θ) (2)

with pa being the pressure amplitude of the incoming
wave. Rigid scattering implies a Neumann-type boundary
condition on ∂D such that

∂ pinc

∂ r
=−∂ psc

∂ r
(3)

where psc denotes the scattered pressure. Note that the
boundary condition according to Equation (3) implies that
all incoming acoustic energy is reflected by the boundary
without any transmission or absorption by the sphere (i.e.
sound hard boundary condition).

!

"

Incident plane wave

# $

Scattered pressure

%&

'()* !, $ = '- . /(01 234(6)

'8* !, $

Evaluation radii

Rigid boundary 9:
9'()*
9! = −9'8*9!

Figure 2. System sketch for the analytical description of acous-
tic scattering from a rigid sphere in spherical coordinates.

The CWE interface in COMSOL computes the acoustic
variable in the time-explicit domain. To compare the time-
harmonic analytical solution and the numerical solution a
time-averaging or interpolation algorithm shall be applied.

2.3 Analytical model
The complex-valued analytical solution for the scattered
pressure psc is given by (Ihlenburg, 2006)

psc(r,θ) =−pa

∞

∑
n=0

(2n+1)inh(1)n (kr)
j′n(ka)

h′(1)n (ka)
Pn(cosθ).

(4)
The scattered pressure psc is described by an infinite

series of spherical Hankel functions h(1)n , derivatives of
spherical Bessel j′n and Hankel functions h′(1)n as well
as Legendre Polynomials Pn. With psc being complex-
valued, only its real part ℜ(psc) is physically relevant to
verify the numerical model. Figure 3 shows the radiation
plot of the scattered pressure of a rigid sphere λ = a at
50 kHz with an incident wave hitting the sphere at 180◦.
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Figure 3. Radiation plot of a rigid sphere (a = λ ) being hit
by an incoming plane wave at 180◦ with a pressure amplitude
pa = 1 Pa. The different lines correspond to evaluation radii
a≤ r ≤ 1.08a.

The sphere size to wavelength ratio plays an impor-
tant role in determining the intensity and directivity of
the scattered pressure. Due to meshing considerations of
the discontinuous Galerkin approach the numerical anal-
ysis is limited to the a = λ case. To complete the study
with further particle sizes and for verification purposes,
Equation (4) for the scattered pressure is implemented into
an analytical model coded in the open-source software R.
Figure 4 shows the resulting radiation plots of the analyt-
ical model for further particle sizes a. With decreasing
particle size the direction of sound diffraction becomes
perpendicular (90◦) to the direction of the incoming plane
wave (at 180◦). Larger particles diffract a notable fraction
of the scattered acoustic pressure in backward direction,
i.e. against the plane wave propagation direction.

3 Numerical Model
Within the Acoustics module several interfaces exist with
predefined features to model acoustic scattering. This
study uses the CWE interface instead which poses a nov-
elty in modeling scattering phenomena with COMSOL



0

20

40

60

80100

120

140

160

180

200

220

240

260 280

300

320

340

−0.002

0

0.002

0.004

0.006

(a) a = 100λ = 686 mm
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(b) a = 0.1λ = 0.68 mm
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Figure 4. Results of the analytical model to visualize the directivity and intensity of the scattered pressure for various particle sizes.
The incident plane wave with a pressure amplitude of pa = 1 Pa hits the particle at 180◦ with a frequency of f = 50 kHz.

5.4. The reason for choosing CWE is to conceive a co-
herent modeling approach which allows the extension of
the model for a broader range of applications (e.g. model-
ing background flow fields).

3.1 Governing equations
In the CWE interface the following set of equations is
solved

Mass conservation

∂ρ

∂ t
+(uuu0 ·∇)ρ +(uuu ·∇)ρ0 +ρ (∇ ·uuu0)+ρ0 (∇ ·uuu) = fp (5)

Momentum conservation

∂uuu
∂ t

+(uuu0 ·∇)uuu+(uuu ·∇)uuu0 +
1
ρ0

∇p− ρ

ρ02 ∇p0 = fff v (6)

Adiabatic equation of state

p = c2
ρ. (7)

ρ is the acoustic perturbation density, uuu0 the station-
ary background flow field velocity, ρ0 the fluid density, uuu
the acoustic velocity, fp is the mass source or sink, p the
acoustic pressure and p0 the background pressure. The
momentum equation features the source term fff v. Since
convective effects based on a stationary background field
are omitted, flow field variables are disregarded which re-
duces the set of equations to the time-dependent wave-
equation.

3.2 Setup and boundary conditions
The numerical analysis of acoustic scattering with CWE
requires some preparatory work. In contrast to the pre-
viously described analytical model in a spherical coor-
dinate system, the numerical model is based on a 2D-
axisymmetric geometry which corresponds to cylindrical
coordinates. Figure 5 shows the setup with computational

domain Ω where the sphere size is magnified for illustra-
tion purposes. For the simulation we chose the condition
a = λ , that is the sphere radius equals to the wavelength,
which corresponds to 6.86 mm at 50 kHz in air. This par-
ticle size is purposeful to determine a suitable modeling
approach. Such dimensions are spatially discretizable for
a numerical solver which poses the basis to compare ana-
lytical and numerical results.
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Figure 5. System sketch for the acoustic scattering numerical
model with computational domain Ω and boundary conditions.

On the pressure boundary 1 , at t = 0 s a pressure of
0 Pa is imposed, which demands for a Dirichlet-type BC
with a phase shift of ϕ =−π/2. Setting an uniform pres-
sure amplitude pa yields the time-dependent pressure BC
for a planar wave

p(t) = pa cos
(

ωt− π

2

)
= pa sin(ωt) (8)

where ω = 2π f . The other boundary conditions are
Neumann-type described by

nnnΩ ·uuu =
p
Z
=

p
cρ

(9)

where nnnΩ is the inwards normal vector on the boundary.
For reflecting boundaries 2 and 4 , the acoustic pres-
sure p is zero meaning that the boundary is considered



sound hard. Boundary 2 produces undesired spurious
oscillations in the acoustic pressure which falsify the scat-
tered pressure field if not handled properly. One way is to
use the absorbing layers, equivalent to perfectly matched
layers to damp oscillations. Another way is to increase the
domain size Ω. Here, this circumstance of spurious oscil-
lations is avoided by stopping the simulation as soon as
the wavefront approaches the boundary. As the imminent
region around the particle is of main interest, effects in the
far field are disregarded.

3.3 Simulation structure
To use CWE for scattering phenomena a two-fold ap-
proach is proposed.

Study 1 - Plane wave In the first study, the computa-
tional domain Ω without the sphere is computed.
This yields the first solution variables for the acous-
tic pressure p, which is a time-dependent plane wave
propagating along the z-axis.

Study 2 - Distorted wave In the second study, the do-
main includes the sphere resulting in a pressure field
p2 which is distorted.

In order to identify the scattered part of the pressure, the
plane wave pressure p needs to be subtracted from the dis-
torted wave p2 during postprocessing stage. Both studies
are carried out with a frequency of f = 50 kHz. To avoid
reflections from outer boundaries in Ω = 100×100 mm2

the simulation run begins at tstart = 0 s and stops at
tend = 100 mm/c = 2.915×10−4 s.

4 Optimal Mesh Size Analysis
Acoustic waves discretized by finite elements should con-
tain a minimum of eight cells per wavelength as popu-
lar rule of thumb. However, for acoustic problems using
the discontinuous Galerkin discretization scheme differ-
ent meshing practices apply. To solve the set of equations,
Eqs. (5) - (7), the constraints on the meshing parameters
are threefold as summarized in Figure 6.

4.1 Meshing considerations
Physical factor
The dG method is intended for acoustic signals that travel
a large distance in comparison to the wavelength. Mesh-
ing with dG requires as little as two cells per wavelength.
A finer mesh may prove counterproductive because there
is a compromise between simulation speed and result ac-
curacy. It is supposed that optimal mesh size h is in the
range (COMSOL, 2019; Jensen, 2017)

1
2

λ < h <
2
3

λ . (10)

As a best practice, it is recommended to build an User-
defined mesh with minimum element size λ/2 and maxi-
mum cell size 2λ/3. Assuming constant speed of sound
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Figure 6. Three factors determine the choice of a suitable mesh
for the time-explicit analysis of ultrasound propagation: the CFL
number (numerical factor), the discontinuous Galerkin formula-
tion (physical factor) and the resolution of the sphere (geometri-
cal factor).

c the minimum element size scales with the frequency
f = c/λ

h→ O
(
(2 f )−1) . (11)

Numerical factor
To ensure stability, the time-stepping discretization
scheme is strictly coupled to the Courant-Friedrichs-Lewy
(CFL) condition. The condition restricts the distance a
particular information can travel in space within one time-
step to achieve convergence and accurate results. For ul-
trasonic waves a CFL-value of 0.1 is recommended, mean-
ing that within one time-step the wave is allowed to propa-
gate 10% of the given cell size h (COMSOL, 2019). With
c being the speed of sound, ∆t the time-step size, the CFL-
number writes

CFL =
c∆t
h

= 0.1. (12)

The minimum time-step required to fulfill the condition
can be rewritten in terms of the frequency of the sound-
wave,

∆t =
CFL h

c
=

CFL λ

2c
=

CFL
2 f

(13)

where the previously recommended relation between
acoustic wavelength and minimum cell size h = λ/2 has
been used.

Geometrical factor
The geometrical resolution of small edges is an additional
restriction for the minimum mesh element size h. The ab-
solute minimum amount of cell elements to capture the
curvature of the sphere boundary is two. Said elements
relate with the sphere radius a by

a =
h√
2
=

λ

2
√

2
(14)



where it is assumed that the minimum element size is
h = λ/2.

4.2 Simulation run
Ideally, simulation results ought to be mesh-independent
in the sense that the obtained results do not noticeably
change with the mesh resolution. A relative change of
< 5% is generally considered acceptable (Versteeg and
Malalasekera, 2007). According to Equation (10), the op-
timal mesh size h is somewhere between hmin = 1/2λ and
hmax = 2/3λ . To verify this best practice, a mesh sensitiv-
ity analysis was conducted. The sensitivity analysis was
carried out for five different meshes. Figure 7 illustrates
the five simulations for N = 4/6/8/16, where N repre-
sents the number of mesh elements the sphere is resolved
by.

Mesh Element 1
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ℎ

"

# = 2

# = 4 # = 6

# = 8 # = 16

Figure 7. Simulations for the mesh sensitivity analysis.

The five simulations are all conducted using a fre-
quency of f = 50 kHz which has a wavelength of λ =
6.86 mm. Hence, the optimum mesh size for such a sim-
ulation is expected to be between hmin = 3.43 mm and
hmax = 4.57 mm. The size of a single mesh element is
given by

h = 2λ sin
(

π

2N

)
(15)

which is valid for a sphere radius a = λ . Therefore, the
theoretical optimum number of nodes is expected between
Nmin = 4.8 and Nmax = 6.3. In practice, of course, N is an
integer.

5 Results
5.1 Mesh study
The results of the mesh study are summarized in Table 1.
To compare the performance of the different simulations
the relative error is calculated with reference to the ana-
lytical solution. The N = 4 case greatly overpredicts the
scattered pressure while the N = 6 simulation provides the
best trade-off between computational time, file size and
accuracy. With only two mesh elements per sphere the
curvature of the geometry is not adequately discretized
which produces spurious oscillations and therefore un-
physical results.

The mesh study confirmed that the best practice of set-
ting the mesh size somewhere between hmin = 1/2λ and
hmax = 2/3λ is confirmed also for scattering phenomena.

5.2 Incident and scattered field
Figure 8 shows the results for the acoustic scattering anal-
ysis. On the left side, the incident pressure is plotted
which consists of a plane wave propagating at f = 50 kHz
undisturbed by the particle located at the center of the
2D-axisymmetric setup. In order to visualize the scat-
tered acoustic amplitudes on the right side, the scattered
pressure is displayed which is obtained by subtracting the
acoustic pressure p2 (i.e. the driving field) from the acous-
tic pressure p.

Within the Pressure Acoustics interface scattering phe-
nomena can be conveniently modelled by using a back-
ground flow field domain node. Here, it is shown that
the same phenomena can be modelled using dG and CWE
with some minor workarounds.

5.3 Analytical verification
Figure 9 compares the analytical solution for the scat-
tered pressure according to Equation (4) to the numeri-
cally computed solution. The results show perfect agree-
ment which means that the modeling approach described
in this study is verified. The mesh element size for this
chosen according to the modeling guideline for CWE,
hmin = λ/2 = 3.43 mm and hmax = λ/1.5 = 4.57 mm.

5.4 Discussion
The discontinuous Galerkin method is characterized by an
advantageous discretization scheme, which allows the cal-
culation of ultrasonic wave propagation. Due to meshing
restrictions, numerical studies can only be conducted for
spheres the size of which is comparable to the wavelength.
The solution presented here is in good agreement with the
analytical solution, which proves that CWE is a suitable
interface for modeling scattering phenomena. In combina-
tion with the analytical model, the applicability of the ap-
proach can be extended for a wider range of sphere sizes.

The mesh study reveals the sweet spot of accuracy and
computational time confirming the suggested mesh size to
wavelength ratio.

6 Conclusion
This study investigates the rigid sphere scattering prob-
lem by using analytical and numerical approaches.Here,
a rigid sphere is hit by an ultrasonic plane wave at a fre-
quency of f = 50 kHz in air. The novely of this numerical
analysis is the use of the Convected Wave Equation, Time
Explicit (CWE) interface in COMSOL MultiphysicsTM to
model scattering phenomena. Note that, the interface was
developed primarily for the modeling of the propagation
of ultrasonic waves. The results for the scattered pressure
are analytically verified. Additionally, a mesh study con-
firms the particularities of meshing with the discontinuous
Galerkin (dG) method.



Table 1. Comparison of the mesh study results. The relative error of the N = 2 study is not evaluated since unphysical results are
produced.

Number of mesh
elements on boundary

Single element
size

Wavelength to
element ratio

Total number
of elements

Computational
time File size Relative error

N h = 2λ sin
(

π

2N

)
λ/h ∆t

[−] [mm] [−] [−] [GB] [%]

2 9.71 0.71 354 1 min 02 s 0.30 n/a

4 5.25 1.33 1016 1 min 27 s 0.85 22.2

6 3.55 1.93 2124 3 min 31 s 1.76 1.9

8 2.67 2.56 3791 4 min 34 s 3.12 3.6

16 1.34 5.10 14552 26 min 38 s 11.97 1.6

forward
scattering

phase-shifted

backward
scattering

same-phase

wave propagation
direction

Figure 8. Result of the acoustic scattering analysis. The incident and scattered pressure fields are displayed on the left and right
hand side of the graph, respectively.
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Because of its memory-efficient way of solving the
wave equation the dG method is an optimal tool to study
a wide range of phenomena in the field of Ultrasonics, in-
cluding scientific as well as industrially relevant problems.
This simple test-case study provides the fundamentals to
pursue advanced numerical work including dissipative ef-
fects for ultrasonic waves in air.
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