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Abstract: We present a model which predicts
the possibility of inducing pressure waves in Ne-
matic Liquid Crystals (NLCs), enclosed in an elec-
trical wave-guide, by means of a suitable peri-
odic electric potential applied at the electrodes.
By proposing a novel interaction term which in-
cludes the coupling between mass density, direc-
tor and gradient of director fields, we predict that
a periodic voltage with the appropriate amplitude
can lead to the sought-after acoustic resonance in
NLCs. Our numerical simulations show that this
constitutive assumption leads to results in agree-
ment with previous experimental measures; more-
over, our results could serve as a guidance to de-
sign further experiments.

1 Introduction

Liquid crystals - as all liquids - are generally
modelled as incompressible media. And rightly
so, since mass-density changes occurring in these
mesophases are minuscule and inconsequential in
most regimes of interest. However, liquid crystals
exhibit also phenomena such as acousto-optic and
acousto-electric interactions that call for a more
refined theory. In particular, it has been experi-
mentally established that the Freedericksz transi-

tion triggered in a Nematic Liquid-Crystal (NLC)
sample by an electrical pulse generates an audi-
ble acoustic signal[1]. With the aim of explaining
this phenomenon, and the converse effect of per-
turbing the directors orientation by means of an
applied acoustic wave, some attempts are present
in the literature, as in Selinger and its co-workers
[2, 4, 3, 5], where an interaction energy propor-
tional to the nematic orientation n ⊗ n and the
gradient of the density ρ is proposed; more re-
cently Virga [6, 7], to capture nemato-acoustic
phenomena, modelled the NLC as a second gra-
dient fluid. What we are proposing in this work
is still the introduction of an interaction energy
between the fluid density and the nematic orien-
tation. Our model is based on the assumption
that the molecules of the NLCs are mostly packed
when the nematic mesogen stay aligned, and that
this configuration yields a maximum for the den-
sity of the NLCs. Thus, for a given pressure,
density varies when neighboring mesogens are ori-
ented along different directions; in particular, an
orientation gradient yields “loosely packed” meso-
gens, and consequently, fluid has a lower density.
Few words are needed to present our ansatz: we
assume that when the directors of the nematic
fluid are all parallel, then the molecules of the fluid
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are all packed in the most ”ordered way”. There-
fore in this configuration the density of the liquid
crystal attains its maximum value. When close
material particles of the liquid crystals have direc-
tors oriented in different directions, once fixed the
liquid pressure, the density varies depending on
the assumed directors’ configuration. This occurs
because the molecules of the fluid crystal, in pres-
ence of gradients of orientation, are more ”loosely
packed” and consequently the density is lower.

2 Theory

Here, we will present an interaction energy based
on our assumption, and show through numerical
simulations a series of results in agreement with
experimental measures, highlighting the possibil-
ity of generating pressure waves by means of an
applied electric potential. Denoted with r its po-
sition vector, the material particle is in a state
characterized by: the nematic director n(r), the
density ρ(r), the electric field E(r), and the ve-
locity v(r); the dependence on the position will
be omitted unless needed. It is important to re-
mind that for NLCs, the states corresponding to
n and −n are indistinguishable[10]. We will base
our modelling procedure on the introduction of the
following specific energy density:

e = eF (n,∇n)+eE(E,n)+eA(ρ,v)+eI(ρ,n,∇n)
(1)

where one can easily identify eF , eE , eA and
eI as the Frank-Oseen, electro-static, acoustic
and (newly introduced) interaction specific energy
densities, respectively. As extensively described in
the literature [10], one can assume:

eF =
1

2
K ‖∇n‖2 , eA = eC +

1

2
v2 , (2a)

eE = −1

2
ε⊥E ·E−

1

2
εa (E · n)

2
, (2b)

where ε⊥ is the specific transverse dielectric con-
stant, εa is the specific dielectric anisotropy, and
K is the specific Frank elastic constant in the one
constant approximation and eC the specific elastic

energy describing compressibility in a NLC. Also
the considered specific interaction energy will need
to verify objectivity conditions, exactly as must be
required to Frank-Oseen energy. Therefore using
the representation theorems presented in [8, 9] we
have

eI(ρ,n,∇n) = eI(ρ,∇ · n,∇⊥n,∇n · n), (3)

where ∇n⊥ = ∇n−∇n · n⊗ n. The importance
of the specific interaction energy we have just in-
troduced will be illustrated by considering what
appears to be its simplest form

ρ eI = s(n,∇n) (4)

s(n,∇n) := α1‖∇·n‖2+α2‖∇⊥n‖2+α3‖∇n·n‖2
(5)

where αi will be interpreted as dilatation coeffi-
cients. Indeed some physical considerations are
needed now: the specific interaction energy term
is intended to describe volume changes induced, in
a nematic fluid, by the spatial gradient of the field
n. The main idea which has suggested Eq. (4) is
the following: for a fixed specific volume 1/ρ and
for increasing norms of ∇n this energy is expected
to increase. As a consequence of Eqs.(2), (4) one
gets

p = ρ2
∂e

∂ρ
= ρ2

∂eC
∂ρ
− s. (6)

When it can be linearised in the neighbourhood of
the value ρ, Eq. (6) reads

p = p+ c2o(ρ− ρ)− s =: p+ c2o(ρ− ρ∗) (7)

where co is the speed of sound in considered NLC.
In order to give a suggestive interpretation of the
newly introduced mass density ρ∗ we may inter-
pret the coefficients αi/c

2
o, i = 1...3 as the varia-

tions of the nematic fluid mass density (which cor-
responds to the pressure p) induced by the nematic
distortion respectively corresponding to ‖∇ · n‖,
‖∇⊥n‖ and ‖∇n · n‖. In other words, when the
nematic fluid is in the spherical stress state de-
scribed by the pressure p, then the relative mass
density assumes the value ρ∗ (which depends on
n and ∇n as specified by Eq. (6)). In the present
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Figure 1: Geometry of the cell.

paper we will limit ourselves to consider dilatation
coefficients αi such that in any considered static
and dynamic regimes

sup
r∈D

s� c2o ρ. (8)

Let D be a rectangular region of the cartesian
plane with sides parallels to the coordinate axes
x and y, as in Fig 1. The boundary ∂D is par-
titioned in the upper and lower electrodes, ∂D+

and ∂D−, respectively, both parallels to x, and the
two sides electrodes ∂D‖, parallels to y. In this 2D
case, the orientation of nematic director n may be
described by the angle θ it forms with a horizontal
direction, thus, n = (cos θ, sin θ). In our reduced
geometry, taking into account the strong anchor-
ing conditions at the boundaries, Eq.(2) reads as

eF =
1

2
K (∇θ)2 , eA = eC +

1

2
v2 , (9a)

eE = −1

2
εa (Ex cos θ + Ey sin θ)

2
, (9b)

and Eq.(5) reduces to

s = α1 (cos θθ,y − sin θθ,x)
2
+α3 (cos θθ,x + sin θθ,y)

2
.

where α2 plays no role as a consequence of the
2D geometry of the considered case of study.
When a voltage V (t) is applied at the top side of
a nematic sample, while grounding the opposed
side, the so called Freedericksz transition can
be triggered[10]. When |V (t)| is below a given
threshold, the only solution for nematic orienta-
tion is θ = 0; above this threshold, a bifurcation
of the type called “pitchfork supercritica” occurs.
Indeed, when |V (t)| exceeds the critical value,

three configurations are possible: the trivial one
is unstable; the other two, symmetric with respect
to each other, are both stable.

3 Governing Equations

The non-dimensional equations of motion ob-
tained from Eqs.(9) are:

∆θ − π2

2

[
(Ẽ2

x − Ẽ2
y) sin 2θ − ẼxẼy cos 2θ)

]
= 0 ,

(10a)

∇ ·
(
ε⊥Ẽ + εa

(
Ẽ · n

)
n
)

= 0 ,

(10b)

Ẽ +∇v = 0 ,
(10c)

∆p̃− p̃,tt = −γs̃,tt ,
(10d)

where the non-dimensional coupling coefficient ap-
pearing in Eq.(10d) is given by

γ =
K

4 po l2o
. (11)

The other normalized quantities are given by
ρ̃ = ρ/ρo, p̃ = (p− p)/po, s̃ = s l2o/K, ũ = u l2o/α0,
t̃ = t/to and ẽ = E/Eo where po, ρo, lo and
Eo are suitable scaling quantities; moreover,
v = V/Vo is the non-dimensional voltage, with
Vo = π

√
K/εa. The characteristic time and

electric field are to = lo/co, and eo = /lo, with
lo the side length along y. Strong anchoring
conditions are imposed at the boundaries ∂D+

and ∂D−, while ∂θ/∂x = 0 is set at ∂D‖. Finally,
a hard wall condition for the pressure field is
considered on whole ∂D.

4 Numerical Model

Because of the multi-physics nature of the model,
three pairwise-coupled physics from three different
modules are used:
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(a) Forced response ↵1 = ↵o, ↵3 = 0 (b) Forced response ↵1 = 0, ↵3 = ↵o (c) Forced response ↵1 = ↵o, ↵3 = ↵o

(d) Pulse response ↵1 = ↵o, ↵3 = 0 (e) Pulse response ↵1 = 0, ↵3 = ↵o (f) Pulse response ↵1 = ↵o, ↵3 = ↵o

Figure 2: FFTs of the pressure corresponding to an applied electric signal which crosses the threshold. The
other parameters of the simulations are: v0 = 1.2, f̃f = 1.3, αo = 10−8 J/Pa, fo = 1.572 MHz

(i) Electrostatics from the AC/DC Module - cou-
pled with (iii) - for computing the electric po-
tential

(ii) Transient Pressure Acoustics from the Acous-
tic Module - coupled with (iii) - for computing
the pressure;

(iii) Weak-form PDE from the Mathematics Mod-
ule -coupled with (i) -for computing the ne-
matic director field

The pressure response of the nematic liquid-
crystal cell to a voltage input is then computed by
performing a time-dependent analysis with a BDF
solver, taking care of satisfying by the Courant-
Friedrichs-Lewy condition. The evolutive solver
is initialized with the fields obtained from the sta-
tionary solution under a given voltage. This allows
the solver to overcome the difficulties due to the
violent nonlinearities triggered by the crossing of
the Freedericksz threshold. The fast Fourier trans-
form of the output signal is finally computed for
a number of input signals and for different values
of the coupling parameters.

5 Experimental results

In our numerical simulations we consider as ref-
erence configuration for the NLC an electrically
unperturbed specimen with spatially constant
pressure field; the non-dimensional Freedericksz
threshold is vF = 1. We then apply on the up-
per side ∂D+ two kinds of time variable electric
potential:

(a) a harmonic signal V (t) = v0 sin(2πf̃f t̃)

(b) a rectangular pulse of amplitude V0 and
length t̃f ;

We assume v0 > vF = 1, thus large enough to re-
alize a Freedericksz transition. The Fast Fourier
Transforms (FFTs) of the pressure signal are plot-
ted in Fig.2. The FFTs of the forced response,
Figures 2a, 2b, and 2c, exhibit strong components
at 2f̃f , 4f̃f and 6f̃f , together with the cavity

modes at f̃ = 1, 2, while no signal is detected at
ff . These high order harmonics of the forcing sig-
nal are due to the non linearity of the system, and
in particular to the crossing of the threshold, and
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Figure 3: Pressure field generated in a NLC

are in agreement with the experiments[1]. The
FFTs of the pulse response, Figures 2d, 2e and 2f,
show the presence of the cavity modes at f̃ = 1,
f̃ = 2, and highlight the fact that their excitation
depends on the values of α1 and α3. In Figure 3
the pressure field generated in the NLC is shown.
The reference configurations we used in the nu-
merical simulations all have vanishing velocity
fields: future investigations should involve the
study of the effects on wave propagation induced
by stationary, non vanishing velocity fields in the
reference configurations.

6 Conclusions

As shown, the mechanical balance equations show
some interesting features, in particular the switch
induced by the Freedericksz transition may change
in a relevant way the overall behaviour of the in-
duced waves. Future investigations on this phe-
nomenon can lead to the establishment of an ex-
perimental procedure for measuring these coef-

ficients or for controlling the actual response of
NLCs to a pulse excitation.
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