

Stuttgart (Germany) 26th-28th October 2011

The Microplane Model for Concrete in COMSOL

A. Frigerio

Agenda

- Aims of the work
- The Microplane Model
 - Main theory aspects
- Implementation in COMSOL
 - How the elastic behaviour was developed
- Few simple examples
- Conclusions

Why a new model for concrete?

- Safety of large civil structures:
 - Often evaluated by means of numerical models based on the Finite Element Method (FEM)
 - Classical approaches are able to properly simulate *only a few specific* characteristic of concrete
 - The Microplane Model seems to be a promising alternative to represent the *overall* behaviour of concrete

• The major mechanical phenomena of concrete are always referable to a plane whose orientation depends on material microstructures, as well as loading and constraint conditions

• The microplane constitutive law is formulated by means of a relation between the strain and stress vectors acting on a plane whose orientation is arbitrary

- The microplane logical scheme consists of three parts
 - The starting point and the final one are the same of classical approaches

• Step 1: application of the kinematic constraint

- The number and orientation of all microplanes related to a material point should be defined
- In each material point the strain tensor ϵ_{ij} is projected on each microplane

$$\varepsilon_i^k = \varepsilon_{ij} n_j$$

$$\begin{split} & \epsilon_{N} = n_{i} \left(\epsilon_{ij} n_{j} \right) = N_{ij} \epsilon_{ij} \\ & \epsilon_{M} = m_{i} \left(\epsilon_{ij} n_{j} \right) = M_{ij} \epsilon_{ij} \\ & \epsilon_{L} = I_{i} \left(\epsilon_{ij} n_{j} \right) = L_{ij} \epsilon_{ij} \end{split}$$

• Step 2: the microplane constitutive law

- The normal strain and stress vectors are split into their volumetric and deviatoric parts
- The volumetric strain and stress are equal for all microplanes
- The elastic response is defined by means of the elastic incremental relations in the rate form:

$$\dot{\sigma}_V = E_V \dot{\epsilon}_V \qquad \dot{\sigma}_D = E_D \dot{\epsilon}_D \qquad \dot{\sigma}_M = E_M \dot{\epsilon}_M \qquad \dot{\sigma}_L = E_L \dot{\epsilon}_L$$

$$E_V = \frac{E}{1 - 2\upsilon}$$
 $E_D = \frac{5E}{(2 + 3\mu)(1 + \upsilon)}$ $E_T = \mu E_D$

• Step 3: application of the principle of virtual work

– The static equilibrium is written with reference to the surface Ω of a unit hemisphere whose centre is the material point

$$\sigma_{ij} = \frac{3}{2\pi} \int_{\Omega} (\sigma_{N} \cdot N_{ij} + \sigma_{M} \cdot M_{ij} + \sigma_{L} \cdot L_{ij}) d\Omega$$

Gaussian quadrature formulas of various degrees of approximation are used to solve the integral over the unit hemisphere

$$\sigma_{ij} \approx 6 \sum_{k=1}^{N_{mp}} W_k \left(\sigma_{N} \cdot N_{ij} + \sigma_{M} \cdot M_{ij} + \sigma_{L} \cdot L_{ij} \right)^{(k)}$$

- COMSOL does not necessarily require developing subroutines thanks to its user-friendly platform
- The implementation process was arranged in several phases, defining:
 - The global parameters and variables that are referred to all microplanes and they are common to all material points
 - The strain and stress vectors on each microplane
 - The constitutive law governing mechanical quantities at the microplane level

- Global parameters and variables definition
 - In the Global Definition node of the Model Builder window

- Strain vectors definition
 - In the Definition node that is a part of the Model node

$$\begin{split} & \epsilon_{N} \! = \! n_{i} \left(\epsilon_{ij} n_{j} \right) \! \! = \! N_{ij} \, \epsilon_{ij} \\ & \epsilon_{M} \! = \! m_{i} \left(\epsilon_{ij} n_{j} \right) \! \! \! = \! M_{ij} \, \epsilon_{ij} \\ & \epsilon_{L} \! = \! I_{i} \left(\epsilon_{ij} n_{j} \right) \! \! \! = \! L_{ij} \, \epsilon_{ij} \end{split}$$

• All strain vector components are defined in the rate form

- Constitutive law implemented by means of PDE modules
 - A total of 112 equations resulting from the 4 vector components per 28 microplanes in each material point
 - In the General Form PDE of the Setting window:

- Stress vectors definition
 - In the Definition node that is a part of the Model node

$$\sigma_{ij} \approx 6 \sum_{k=1}^{N_{mp}} w_k \left(\sigma_N \cdot N_{ij} + \sigma_M \cdot M_{ij} + \sigma_L \cdot L_{ij} \right)^{(k)}$$

- The Solid Mechanics module was added to study the mechanical behaviour of concrete structures
 - The dependent variables are the displacement field: u, v and w
 - This module is coupled with the PDE modules as follows:

- Som $1 = \sigma_{xx}$
- Som $2 = \sigma_{vv}$
- Som3 = σ_{zz}
- Som $4 = \sigma_{xy}$
- Som $5 = \sigma_{xz}$
- Som6 = σ_{yz}

Simple applications

• The elastic behaviour was verified on a concrete cube

Simple applications

• The elastic behaviour was verified on a concrete gravity dam

Linear elastic model

Microplane model

Conclusions

- COMSOL has shown a good capacity to manage a complex implementation process
- 3D constitutive laws could be easily implemented without writing complex user subroutines
- The implementation of the non-linear behaviour of concrete is in progress
 - No external user subroutines are required
 - The implementation methodology is similar to that used for the linear elastic part

Thank you

antonella.frigerio@rse-web.it

This work has been financed by the Research Fund for the Italian Electrical System under the Contract Agreement between RSE and the Ministry of Economic Development.

