

Unit for Energy Efficient Buildings Institute for Construction and Materials Science University of Innsbruck

3D Simulation of Heat and Moisture Diffusion in Constructions

Wooden Beam End Application

Michele Bianchi Janetti Fabian Ochs Wolfgang Feist

michele.janetti@uibk.ac.at

Contents

- Introduction and motivation
- State of the art and R&D demand
- Mathematical model
- Simulation results
- Outlook

Unit for Energy Efficient Buildings Institute for Construction and Materials Science

University of Innsbruck

Diffusion In Constructions

Introduction and Motivation

Source: Passiv Haus Institut, Protokolband Nr.32, Architect Fingerling temperature distribution

40% total energy consumed in buildings Retrofitting of existing buildings: **3ENCULT EU Project** Risk of damages due to water condensation Heat & moisture simulations required

State of the Art and R&D Demand

Features	Specialized Software	COMSOL Multiphysics
Geometry	limited to 2D	3D possible
CFD	no / limited	possible
Phase change (I-s)	no / limited	possible
Coupling with Matlab / Simulink	limited	possible

Unit for Energy Efficient Buildings Institute for Construction and Materials Science

University of Innsbruck

Diffusion In Constructions

Mathematical Model

$$\begin{cases} \frac{\partial u}{\partial \varphi} \frac{\partial \varphi}{\partial t} + \frac{\partial}{\partial x} \left(-D_{m,\varphi} \frac{\partial \varphi}{\partial x} - D_{m,T} \frac{\partial T}{\partial x} \right) = 0 & \text{Moisture balance} \\ \frac{\partial h}{\partial T} \frac{\partial T}{\partial t} + \frac{\partial h}{\partial \varphi} \frac{\partial \varphi}{\partial t} + \frac{\partial}{\partial x} \left(-D_{e,T} \frac{\partial T}{\partial x} - D_{e,\varphi} \frac{\partial \varphi}{\partial x} \right) = 0 & \text{Energy balance} \\ & & \text{PDE Mode} \\ & & \text{coefficient form} \\ \varphi & & \text{Relative Humidity} \\ T & & \text{Temperature} \\ u & & \text{Water content} \\ h & & \text{Enthalpy} \\ D_{m,\varphi}, D_{m,T}, D_{e,T}, D_{e,\varphi} & \text{Diffusion coefficients} \end{cases}$$

Unit for Energy Efficient Buildings Institute for Construction and Materials Science

University of Innsbruck

Diffusion In Constructions

Material Functions

Water storage

Energy storage

Liquid water conductivity

Vapor diffusion

Heat conductivity

0.8 0.6 u/n⁺ [-] 0.4 0.2 0.4 0.2 0.6 0.8 **•** [-] 1 Concrete 2 Brick 3 Cellulose

Water retention curve

UIBK - EB – 27.October 2011

4 Spruce

Unit for Energy Efficient Buildings Institute for Construction and Materials Science University of Innsbruck

Diffusion In Constructions

Cross Validation Comsol – Delphin One-dimensional Wall Model

universität

3D Simulation of Heat and Moisture

Unit for Energy Efficient Buildings Institute for Construction and Materials Science

University of Innsbruck

Diffusion In Constructions

Beam End 3D Simulation

Unit for Energy Efficient Buildings Institute for Construction and Materials Science

University of Innsbruck

Beam End 3D Simulation

Relative Humidity and Temperature distribution after two years

UIBK - EB – 27.October 2011

Unit for Energy Efficient Buildings Institute for Construction and Materials Science

University of Innsbruck

Beam End 3D Simulation

(1)

(2) (3)

(4)

(5)

Diffusion In Constructions

Outlook

What has already been done

- Implementation of the model in Comsol
- Cross-validation with Delphin
- 3D Simulation

Further works

- Validation against measurements
- Phase change (I s)
- Coupling with building model
- Coupling with fluid dynamics

Diffusion In Constructions

Unit for Energy Efficient Buildings Institute for Construction and Materials Science

University of Innsbruck

Thank you for your attention!

michele.janetti@uibk.ac.at