Treating brain cancer with heat therapy using a novel noninvasive microwave applicator

COMSOL 2020 North America • October 7-8 • Online Event

Dario Rodrigues, Assistant Professor University of Maryland School of Medicine, Baltimore

Mark Mishra Jason Molitoris Zeljko Vujaskovic

Martin Wadepohl Günter Futschik Paul Turner Jason Ellsworth

Disclosures

 Dr. Dario Rodrigues – grant recipient of a Sponsored Research Agreement (SRA) with Pyrexar Medical, Salt Lake City, UT

Clinical benefit of radiation (RT) ± hyperthermia (HT) in glioblastoma (GBM)

GBM 2-year survival

Randomized Trial in Primary GBM

(Conventional RT + brachy boost ± interstitial HT)

HT (40-45°C) doubled 2-year survival!

Noninvasive applicator configuration

- Operating frequency: 915 MHz
- Array: 3 rings of 24 antennas (dipole size 9×24 mm)
- Cylindrical frame: 13 cm length, 26 cm dia. (~4cm water bolus)

Antenna port parametrization

 Fully parametrized port phase and input power for all 72 antennas using 72, 24, or 8 amplifier controls

Practical applicator design involves using 8 amplifiers controlling 9 antennas each

Experimental phantom measurements

Setup for E-field measurements

E-field sensor - miniature dipole 12mm long

Phantom Heating measurements

BSD-500 915MHz 8 channel generator

Setup for Thermometry

3D MR, SigmaVision Advanced & 1D RF-insensitive thermistors

1.5T MRI system (Magnetom Symphony)

Computational modeling methods: RF→HT↔FF

Specific absorption rate, SAR (%)

Heat Transfer Module

Temperature (°C)

CAD Import Module Material Library

Optimization Module Fluid flow embedded in a boundary condition in HT using average h_{bolus} = 50 W/m²/K and T_{bolus} = 23 °C

Steering with 72 amplifiers in a phantom

Simulation vs Experimental probe thermometry

Target = phantom center (0,0,0) cm

Simulation vs Experimental MR thermometry

 $\Delta y = 16 \text{ mm}$ Heat focus = $4 \times 1.5 \times 1.5 \text{ cm}^3$

Heat focus =
$$\frac{\Delta T_{\text{max}}}{2}$$

 $\Delta y = 18 \text{ mm}$ Heat focus = $3.4 \times 1.4 \times 1.5 \text{ cm}^3$

Anatomical model

Computational methods

- Power optimized based on T_{tumor} = 40-44°C, T_{normal} <42°C
- Necrotic core (2 cm) with 10% of white matter blood perfusion
- Water bolus convective cooling: T_{bolus} = 23°C, h_{bolus} = 50 W/m²/K
- Bioheat equation with temperature dependent blood perfusion:

Steering with 72→8 amplifiers

Relative power optimization 1/2

Relative power optimization 2/2

Conclusions

- 3D MR and 1D thermometry validated COMSOL numerical simulations
- The feasibility of heating small targets in a head phantom using a novel microwave brain applicator is demonstrated with experiments and numerical simulations
- Phantoms confirm reliable and predictable focus steering
- 8 channels may have phase control limitations, but using improves thermal dose in target while reducing hot spots in healthy tissue
- By providing a dedicated noninvasive HT brain applicator, focused heating will likely significantly increase clinical outcomes of GBM cancer treatments using radiation and/or chemotherapy, as it has in many other clinical trials that used adjuvant HT