A PYROPROBE DESIGN FOR MILLISECOND TIME-SCALE RESOLUTION FOR BIO-BASED SUSTAINABLE REACTION PRODUCTS

Arvind Nanduri* and Patrick L. Mills

Chemical & Natural Gas Engineering Department, Texas A&M University-Kingsville, Kingsville, TX 78363 USA

ABSTRACT: Existing commercial pyrolysis systems do not have the capability to perform millisecond-scale temporal analysis of the pyrolysis vapors. This capability would provide time-resolved experimental data on the various gas-phase intermediates predicted by density functional theory (DFT) models. To provide this capability, a novel experimental setup was designed by interfacing the probe rod from a CDS Analytical 5200 Series Pyroprobe system with a fast pulsing valve that can introduce micro-mole scale pulses of pyrolysis vapor into a synchrotron-based vacuum ultraviolet photoionization mass spectroscopy (SVUV-PIMS) instrument. CFD simulations for this modified pyroprobe system were performed using COMSOL Multiphysics®, which showed the average vapor residence time (t) inside the probe to be about 180 ms for 280 ml/min inlet flow. This millisecond range residence time of the modified pyroprobe is well-suited to interrogate the primary fast pyrolysis reactions by mapping the time evolution profiles of the nascent reactive/stable intermediates.

Simplified Geometry & Location of Zones

Zone	Location	Flow Regime
Zone 1	Annulus Region	Continuum (Kn ≤ 10 ⁻³)
Zone 2	Between probe rod and quartz tube	
Zone 3	Between interface and quartz tube	
Zone 4	Quartz tube	
Zone 5	Between interface outlet and quartz tube	
Zone 6	Interface stem	
Zone 7	Internal bore in the union fitting	
Zone 8	Pulse valve base	
Zone 9	Internal bore & 0.004" Orifice	Free Molecular (Kn ≥ 10)

Governing Equations, Assumptions & **Boundary Conditions**

Equation of motion for a Newtonian fluid (Zones 1-8): $\rho \frac{Dv}{Dt} = -\nabla p + \mu \nabla^2 v + \rho g$

Equation of change (Zone 9):
$$\frac{\delta c_i}{\delta t} - D \frac{\delta^2 c_i}{\delta x^2} = R_i$$

$$D = \frac{2}{3P\sigma_A^2} \sqrt{\frac{K_B^3 N_A T^3}{\pi^3 M_A}} \text{ (Self-Diffusion Coefficient, c.a. 4.37*10^2 m^2/s)}$$

- Steady-state (Zones 1-8)
- Isothermal (T = 298 K)
- Flow is uniformly distributed at the inlet

Boundary Conditions for Zones 1 to 8

- Inlet V = $0.25261 \text{ m}^2/\text{s}$ or Q = 280 ml/min
- Equal velocity at the interface between zones
- Outlet P = 50 to 760 Torr

Boundary Conditions for Zone 9

• Inlet
$$F_0 = \left(\frac{N_0}{N_A * A_{bore}}\right) \left(\frac{t}{\tau^2}\right) e^{\left(-\frac{t}{\tau}\right)}$$

• Outlet
$$F_{out} = -\frac{V_p * c}{A_{orifice}}$$

 $\tau = 1 \text{ ms, } t = 0 - 1 \text{ s, } N_0 = 10^{12} \text{ molecules, } V_p = 200 \text{ 1/s, } A_{bore} = 4.87 \times 10^{-7} \text{ m}^2$ & $A_{\text{orifice}} = 8.11*10^{-9} \text{ m}^2$

Schematic of the Modified Pyroprobe Reactor

Key Results

Simulated Gas Pulse Intensity Profile for a 1ms Pulse Width

Conclusions

- **Slip flow regime** is observed in Zone 1 when $P_{out} = 50$ and 120 Torr.
- Slip flow regime is observed in Zones 4 & 8 when $P_{out} < 100$ Torr. Flow remains in **continuum regime** in zones 3 & 5-7 for all P_{out} values.
- The ΔP across the system is constant (ca. 0.14 Torr) for all outlet pressures to maintain a constant inlet flowrate (280 ml/min).
- Due to the constant ΔP , the average values of U, Q & Re in each zone across all the outlet pressures are also constant.
- The **residence time** (t) for a molecule to reach the pulse valve orifice from the sample holder is ca. 180 ms.