Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Better Understanding of Resonance through Modeling and Visualization

D.O. Ludwigsen, C. Jewett, and M. Jusczcyk
Kettering University

Students encounter cavity resonance and waveguide phenomena in acoustics courses and texts, where the study is usually limited to cases with simple geometries: parallelepipeds, cylinders, and spheres. At Kettering University, we are beginning to employ finite element modeling in our acoustics classes to help undergraduates better understand the acoustic modes of actual structures. This ...

Design and Simulation of a Spout Fluid Bed Coating System

Joel L. Plawsky and Howard Littman
Department of Chemical and Biological Engineering
Rensselaer Polytechnic Institute
Troy, NY

Since aerogel materials are open cell, inorganic foams, the surface pores of the material must be sealed for large scale application. Here we discuss the design and development of a spout fluid bed system for producing coated aerogel particle material. COMSOL Multiphysics was used in the design of the system to track the details of the flow field and individual aerogel particle trajectories. ...

Using Coupling Variables to Solve Compressible flow, Multiphase flow and Plasma Processing Problems

D. Smith
MKS Instruments

This presentation summarizes three different types of modeling using COMSOL Multiphysics. It is divided into three parts: Compressible flow, Multiphase flow, and Plasma Simulations. For the first part, we perform a special case study of the Mass Flow Verifier. A Mass Flow Verifier validates the accuracy of a Mass Flow Controller by measuring the rate of change of pressure in a fixed volume. ...

Electric Current Model of Varying Tissue Properties

D.J. Evans[1], and M.L. Manwaring[1,2]
[1] Brain Instrumentation Lab, Brigham Young University
[2] University of Idaho, Moscow

A COMSOL Multiphysics 2D model of human tissue focuses on the change in dielectric properties (conductivity and permittivity) due to temperature, tissue type, blood flow, structure and other properties. These induced changes in dielectric properties result in significant changes in temperature and possible breakdown of the tissue. The result of this complex interaction is a feedback loop that ...

Expand and Manage Your COMSOL Materials Library

MatWeb
Material Property Data

These slides are from a Poster presented at the Boston User’s Conference. They will explain how you can use MatWeb to automatically add any of our 60,000 material specifications to you COMSOL material library.

Transport Phenomena in Nafion®-Polypropylene Composite Membranes

V.V. Narvekar, Q. Fan, and S. Warner
Dept. of Materials and Textiles, University of Massachusetts, Dartmouth

A computational model is used to describe the current density distribution and the water management in the Nafion® 117 and Nafion®1115/PP composite membranes. The effects of the change in the membrane water content and the back-diffused water on distribution of proton concentration is discussed.

Optimization of an Adiabatic Demagnetization Refrigerator’s Superconducting Magnet Shield for the Micro-X High-Resolution Microcalorimeter X-ray Imaging Rocket

E. Figueroa-Feliciano[1], M. Cavolowsky[2], C. Macklin[2], Z. Li[1], A. Sharer[2], and A. Walker[2]
[1] Massachusetts Institute of Technology, Cambridge, MA
[2] Olin College, Needham, MA

We are working on the design of a sounding rocket payload to perform high-resolution imaging spectroscopy of the Puppis A supernova remnant. This rocket payload uses Transition-Edge-Sensor Microcalorimeters, which are superconducting detectors that obtain very high (2 eV FWHM at 6 keV) imaging spectra. These devices need to be cooled to 50 mK, for which we are designing an adiabatic ...

Simulation of the Capacitive Double Layer at the Interface between Microelectrodes and Cortical Tissue Using Comsol Multiphysics and SPICE Modeling

R.M. Field, and M. Ghovanloo
NC-Bionics Laboratory, North Carolina State University

The interface between microelectrodes and biological tissue is of great interest to researchers working on extracellular stimulation. In this paper, we outline a method used to model the complex double layer capacitance at the interface between the electrodes and the cortex. This model relies on the combined power of SPICE, MATLAB, and COMSOL Multiphysics. The goal of this model is to ...

Modeling Acoustic Wave Scattering from Cells and Microbubbles

O. Falou [1], J.C. Kumaradas[2], and M.C. Kolios[1,2]
[1] Dept. of Electrical and Computer Engineering, Ryerson University
[2] Dept. of Physics, Ryerson University

A finite-element model of wave propagation using COMSOL Multiphysics has been developed to solve the problem of ultrasound scattering from spherical structures. This model will be used to predict ultrasound backscatter from cells for ultrasound tissue characterization, and scattering from microbubble contrast agents. In this paper, we discuss an improvement to our model by using a ...

Using COMSOL Multiphysics to Model Viscoelastic Fluid Flow

B.A. Finlayson
Department of Chemical Engineering, University of Washington

Viscoelastic fluids have first normal stress differences even in rectilinear flow. Thus, they are more complicated than purely viscous non-Newtonian fluids modeled as a power-law model or Carreau model. Viscoelastic effects must be included when modeling the flow of polymer melts and concentrated polymer solutions in situations for which the normal stresses matter. The extrudate swell problem ...

Quick Search