Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling of Supercapacitor

G. Madabattula[1], S. K. Gupta[1]
[1]Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India

Low cost high energy density batteries that can be charged and discharged rapidly are required in a number of applications. Tapping energy from renewal resources such as solar, wind and tide requires rapidly generated energy to be first stored and then used round the clock. Storing energy of a moving vehicle as it slows down and recovering it to accelerate the vehicle later can significantly ...

Design and Simulation of Piezoelectric Ultrasonic Micro Motor

P. Patel[1], P. Manohar[1]
[1]Electrical and Electronics Department, M. S. Ramaiah Institute of Technology, Bangalore, Karnataka, India

Micro machined motors are a recent development in the domain of electrical machines. Compared to the conventional electromagnetic motors, micro machined motors offer high torque at lower speed, and are compact in nature. This makes them suitable for applications in the field of microsatellite, biomedical, micro robot, automobile, and auto focusing camera. The present work describes the design and ...

Miscible Viscous Fingering: Application in Chromatographic Columns and Aquifers

S. Pramanik[1], G. L. Kulukuru[1], M. Mishra[1]
[1]Indian Institute of Technology Ropar, Rupnagar, Punjab, India

When a less viscous fluid displaces a more viscous one in a porous medium or Hele-Shaw cell, the interface between the two miscible fluids does not remain flat and deforms into fingers growing in time [1]. It occurs due to the faster movement of less viscous fluid than the more viscous one, for a given pressure gradient. Fingering affects in aquifers, in packed bed reactors, and detrimental to ...

Comparative Numerical Studies of Scramjet Inlet Performance Using k-? Turbulence Model with Adaptive Grids

V. Gopal[1], R. Kolluru[1]
[1]BMS College of Engineering, Bangalore, Karnataka, India

Scramjet inlet design remains as a key aspect for hypersonic flight. To assess the inlet design, the performance parameters namely; air-capture ratio, total pressure efficiency, inlet drag coefficient, and kinetic energy efficiency are evaluated and analysed. In the current study comparison of performance parameters is carried out by performing numerical computation of 2-D turbulent flow field ...

Thermal Analysis of Induction Furnace

A. A. Bhat[1], S. Agarwal [1], D. Sujish[1], B. Muralidharan[1], B. P. Reddy[1], G. Padmakumar[1], K. K. Rajan[1]
[1]Indira Gandhi Center for Atomic Research, Kalpakkam, Tamilnadu, India

Induction furnaces are employed for vacuum distillation process to recover heavy metals after electro-refining operation. Induction furnace of suitable heating rate and cooled by passive means are required to be developed for this purpose. It is planned to set up a mock up induction furnace which will simulate the conditions to be realized in actual vacuum distillation furnace for this purpose. ...

Coupled Electromagnetic and Heat Transfer Simulations for RF Applicator Design for Efficient Heating of Materials

C. Thiagarajan[1], J. Anto[2]
[1]ATOA Scientific Technologies Pvt Ltd, Whitefield, Bangalore, Karnataka India.

Conventional heating of material wastes energy during heating due to inherent radiation, conduction and convection based heating mechanism. Alternate efficient heating methods are actively researched for improved efficiency. Radio frequency based electromagnetic heating is increasingly used for efficient heating in place of conventional heating. This requires coupling of electromagnetic and heat ...

Studies of Lead Free Piezo-Electric Materials Based Ultrasonic MEMS Model for Bio sensor

P. Pattanaik[1], S. K. Kamilla[1], D. P. Das[2], S. K. Pradhan[3]
[1]MEMS Design Center, Institute of Technical Education & Research (ITER), Sikhya ‘O’ Anushandhan University, Bhubaneswar, Odisha, India
[2]Process Engineering and Instrumentation Lab, Institute of Minerals and Materials Technology (IMMT), Bhubaneswar, Odisha, India
[3]Dept of ECE, Hi-Tech Institute of Technology, Khurda, Odisha, India

This paper describes the design of an ultrasonic transducer using different lead free piezo-electric materials and evaluates their performance with different glucose levels in the human blood. COMSOL Multiphysics 4.2a was used for the simulation study using 2D axis symmetric model of piezoelectric transducer which was designed with lead free piezoelectric materials such as Barium Sodium Niobate ...

Design and Simulation of MEMS Based Gyroscope for Vestibular Prosthesis

R. Nithya[1], K. Kavitha[1], R. K. Shahana[1], A. Gupta[1], M. Alagappan[1]
[1]Department of Biomedical Engineering, PSG College of Technology, Coimbatore, Tamilnadu, India

The primary function of the vestibular system is to provide the brain with information about the body\'s motion and orientation. The absence of this information causes blurred vision and spatial disorientation, vertigo, dizziness, imbalance, nausea, vomiting, and other symptoms often characterize dysfunction of the vestibular system. Our aim is to design vestibular prosthesis using COMSOL ...

Modeling of Induction Heating of Steel Billets for Control Design Purposes

J. Kapusta[1], J. Camber[1], G. Hulkó[1]
[1]Institute of Automation, Measurement and Applied Informatics, Faculty of Mechanical Engineering, STU Bratislava, Slovak Republic

This paper deals with numerical modeling of modular industrial induction heating of steel billets for hot forming applications using the COMSOL Multiphysics. A mathematical model based on Finite Element Method is presented. Design of induction heaters is constantly evolving and improving in terms of electrical and thermal efficiency. In recent years there is a trend of modular designed induction ...

Simulation and Optimization of MEMS Piezoelectric Energy Harvester with a Non-traditional Geometry

S. Sunithamani[1], P. Lakshmi[1], E. E. Flora[1]
[1]Department of EEE, College of Engineering, Anna University, Chennai, India

Piezoelectric energy harvester converts mechanical vibrations into electrical energy via piezoelectric effect. The geometry of the piezoelectric cantilever beam greatly affects its vibration energy harvesting ability [1]. In this paper a MEMS based energy harvester with a non-traditional geometry is designed. The design of the energy harvester consists of a rectangular cantilever structure with ...

Quick Search