Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation of Deformed Solid Particles in Constrained Microfluidic Channel

M. Cartas-Ayala[1], R. Karnik[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

Characterization of particles has numerous applications in science and diagnostics. Recently, particle passage through constrained microchannels has been proposed to characterize particles based on their passage velocity. Nevertheless, there is no clear understanding of how the physics in this system interact. Here we quantify the effects of the flow around the particle by simulating the passage ...

Human Torso Model for Heat Transfer Analysis

X. Xu[1], T. Patel[1], R.W. Hoyt[1]
[1]U.S. Army Institute of Environmental Medicine, Natick, MA, USA

A human torso model was created for heat transfer analysis. The torso was derived from the ‘Virtual Family’ whole-body voxel data from the ITIS Foundation (Zurich, Switzerland). Measurements were taken from the ITIS male along the axial plane at key anatomical landmarks and used to develop geometry in Solidworks. Individual components were created to represent the skin, fat, muscle, and bone ...

Multiphysics Modelling of Standing Column Well and Implementation of Heat Pumps Off-Loading Sequence

A. Nguyen[1], P. Pasquier[1], D. Marcotte[1]
[1] Department of Civil, Geological and Mining Engineering, École Polytechnique de Montréal, Montréal, QC, Canada

A fully coupled multiphysics model involving heat transfer and groundwater flow within a SCW and its surrounding ground was implemented in COMSOL Multiphysics 4.2a with MATLAB to simulate a 24-hour heating operation. The heat pumps were modeled using interpolation functions thereby allowing the effect of the pumped water temperature on the capacity and coefficient of performance of the heat ...

Wireless RF Digital System for Mouth-Embedded Multi-Sensor Communication

I.M. Abdel-Motaleb[1], J. Lavrencik [1]
[1]Department of Electrical Engineering, Northern Illinois University, DeKalb, IL, USA

There is urgent need to monitor dental and oral diseases, such as tooth decay, gum diseases, and teeth grinding. Such monitoring can be achieved by embedding sensors in the mouth. This technique faces some difficulties. The first is how the power needed for the operation of the sensors and the associated electronic chips can be generated. This power can be generated using the pressure exerted by ...

COMSOL Simulations for Steady State Thermal Hydraulics Analyses of ORNL’s High Flux Isotope Reactor

P.K. Jain[1], V.B. Khane[2], J.D. Freels[1]
[1]Oak Ridge National Laboratory, Oak Ridge, TN, USA
[2]Missouri University of Science and Technology, Rolla, MO, USA

Simulation models for steady state thermal hydraulics analyses of ORNL’s HFIR have been developed using COMSOL. A single fuel plate and coolant channel of each type of HFIR fuel element was modeled in three dimensions. The standard k-? turbulence model was used in simulating turbulent flow with conjugate heat transfer. The COMSOL models were developed to be fully parameterized to allow ...

COMSOL-based Simulations of Criticality Excursion Transients in Fissile Solution

C. Hurt[1], P. Angelo[2], R. Pevey[1]
[1]Department of Nuclear Engineering, University of Tennessee, Knoxville, TN, USA
[2]Y-12 National Security Complex, Safety Analysis Engineering, Oak Ridge, TN, USA

Simulation of criticality accident transients offers the ability to confirm understanding of critical configurations, bound accident scenarios and aid comprehensive emergency planning. Computational ability to recreate excursion power histories in fissile solution is sought due to the predominance of solutions in process criticality accidents. Applicable solution transient physics methodologies ...

Vibration and Acoustic Analysis of a Trussed Railroad Bridge under Moving Loads

R. Costley[1], H. Diaz-Alvarez[1], M. McKenna[1], A. Miller[1]
[1]U.S. Army Engineer Research and Development Center, Vicksburg, MS, USA

Two finite element models have been developed to investigate the acoustic radiation from a Pratt truss train bridge. The first model was a time dependent structural model that determined the vibration response of the structure due to two wheels, representing a single axle, moving across the bridge at constant speed. This model was expanded to include multiple axles to represent a locomotive. The ...

Irrotational Motion of an Incompressible Fluid Past a Wing Section in an Unbounded Region

J. Russell[1]
[1]Florida Institute of Technology, Melbourne, FL, USA

Developers of numerical models who address the title problem face several hurdles, such as: (1), the need to formulate boundary conditions applicable in an unbounded region; (2), The need to specify conditions suitable to ensure a unique solution in a doubly connected region; and (3), The need to allow the interior boundary to have a sharp edge, such as a cusp. The aim of the work reported ...

Progress in Numerical Simulation of HIIPER Space Propulsion Device

P. Keutelian[1], A. Krishnamurthy[1], G. Chen[1], B. Ulmen[1], G.H. Miley[1]
[1]University of Illinois at Urbana-Champaign, Champaign, IL, USA

HIIPER is an experimental space propulsion device using a helicon and an IEC as a plasma generation and acceleration stage, respectively. There is an experiment in progress, but for true rapid iteration and to model the performance of the engine, COMSOL is a strong candidate for fulfilling these roles and continuing with the project until its production phase. The simulation is built with very ...

Modeling the Effect of Discrete Distributions of Platinum Particles in the PEM Fuel Cell Catalyst Layer

C.F. Cetinbas[1], A.K. Prasad[2], S.G. Advani[1]
[1]Center for Fuel Cell Research, Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
[2]University of Delaware, Newark, DE, USA

In this study, the basic catalyst layer (CL) structure, consisting of carbon-supported Pt particles (C|Pt) and an ionomer binder, is investigated numerically by using COMSOL. The significance of modeling discrete Pt particles on the carbon support is highlighted by comparing the cell performance results to the case in which the Pt is assumed to be distributed uniformly over the carbon support as ...

1 - 10 of 143 First | < Previous | Next > | Last