Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Using CFD to Predict the Performance of Innovative Wind Power Generators

D. Allaei[1]
[1]Sheer Wind Inc., Chaska, MN, USA

INVELOX is an innovative wind power generation system as shown in Figure 1. It is comprised of a wind capturing system that accelerates and delivers high kinetic energy wind to a power conversion system placed in the Venturi section of the INVELOX. The objective of this project is to build a full scale model to verify laboratory and field our test data and to utilize the validated model as an ...

A COMSOL Model of Damage Evolution Due to High Energy Laser Irradiation of Partially Absorptive Materials

P. Joyce[1], J. Radice[1], A. Tresansky[1], J. Watkins[1]
[1]United States Naval Academy, Annapolis, MD, USA

In this paper we present a transient numerical model of the heat transfer and thermochemical damage evolution in an IR translucent material using COMSOL Multiphysics. The model is evaluated using literature supplied and experimentally determined material properties for carbon black laden PMMA (polymethyl-methacrylate). This variant of PMMA was chosen because it is homogeneous, isotropic, and the ...

Wind Flow Modeling of Area Surrounding the Case Western Reserve University Wind Turbine

M. Fernandes[1], D. Matthiesen[1]
[1]Case Western Reserve University, Cleveland, OH, USA

The CWRU Turbine is a research turbine located in a urban campus in Cleveland, Ohio. This location may create turbulence, resulting in a possible loss in energy generation. This research attempts to answers the question of whether the wind flow is affected by the buildings or not. The surrounding buildings, which vary in height from 20 to 40 meters, may affect the wind patterns at the hub height. ...

Natural Convection Driven Melting of Phase Change Material: Comparison of Two Methods

D. Groulx[1], F. Samara[1], P.H. Biwole[2]
[1]Department of Mechanical Engineering, Dalhousie University, Halifax, NS, Canada
[2]Department of Mathematics and Interactions, University of Nice Sophia-Antipolis, Nice, France

Design of latent heat energy storage systems (LHESS) requires knowledge of heat transfer processes within them, as well as the phase change behavior of the phase change material (PCM) use. COMSOL Multiphysics can be used to model (LHESS). Natural convection plays a crucial role during the charging phase of the LHESS, and methods to incorporate this heat transfer mode within COMSOL simulation of ...

Modeling Void Drainage with Thin Film Dynamics

J.J. Gangloff Jr.[1], W.R. Hwang[2], S.G. Advani[1]
[1]Center for Composite Materials, Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
[2]School of Mechanical Engineering, Gyeongsang National University, Jinju, Gyeongsangnam-do, Korea

Voids in composite materials can lead to degraded structural performance. The following is a study of voids or bubbles in uncured viscous polymer resin during composites processing. The goal is to determine if voids can successfully migrate towards vacuum pathways, coalesce with the pathways, and escape. Inherent to the coalescence process is the drainage and rupture of the resin thin film formed ...

Load Cell Design Using COMSOL Multiphysics

A. Marchidan[1], T. Sullivan[1], J. Palladino[1]
[1]Trinity College, Hartford, CT, USA

COMSOL Multiphysics was used to design a binocular load cell. A three-dimensional linear solid model of the load cell spring element was studied to quantify the high-strain regions under loading conditions. The load cell was fabricated from 6061 aluminum, and general purpose Constantin alloy strain gages were installed at the four high-strain regions of the spring element. The four gages were ...

Numerical Study and Simulation in COMSOL Multiphysics of the Dilution Process during Dust Sampling in Dry Machining

B. Wenga-Ntcheping[1], A. Djebara[1], R. Kamguem[1], J. Kouam[1], V. Songmene[1]
[1]University of Quebec-École de Technologie Supérieure, Montreal, Canada

Dilution’s issue during dry machining have raised the interest’s environmental researchers and engineers. In fact, the sampling of dust emitted during dry machining was a serious problem for air quality evaluation at the workplace. Furthermore, the best sampling of fine and ultrafine particles produced during material cutting, passed through the dilution of high particle concentration ...

Cryogenic Heat Sink for Helium Gas Cooled Superconducting Power Devices

L. Graber[1], N.G. Suttell[1], D. Shah[1], D.G. Crook[1], C.H. Kim[1], J. Ordonez[1], S. Pamidi[1]
[1]Center for Advanced Power Systems, Florida State University, Tallahassee, FL, USA

Heat sinks for cryogenic applications using helium gas as the coolant are not readily available. They require to be designed specifically for the intended application. A finite element model was developed to study the feasibility and optimize the design. The FEM computing package COMSOL Multiphysics allowed to couple fluid flow and heat transfer as needed. An experiment was designed to validate ...

Modeling and Analysis of a Direct Expansion Geothermal Heat Pump (DX): Part I-Modeling of Ground Heat Exchanger

C. Rousseau[1], J. Fannou[1], L. Lamarche[1], M. Ouzzane[2]
[1]École de Technologie Supérieure, Montréal, Québec, Canada
[2]CanmetENERGY, Varennes, Québec, Canada

Geothermal heat pump technology is actually one of the most interesting processes to provide heat and cold to a building. In this study, a model of the ground exchanger of a direct expansion geothermal heat pump (DX) is going to be presented in 1 dimension. The model represents the phase change of the refrigerant, here Chlorodifluoromethane R22, with governing continuity, momentum and energy ...

COMSOL Thermal Model for a Heated Neural Micro-Probe

M. Christian[1], S. Firebaugh[1], A. Smith[1]
[1]United States Naval Academy, Annapolis, MD, USA

This project utilizes the heat transfer module of the COMSOL Multiphysics environment to model the effects that an ohmic heating probe will have on neural tissue. The model quantifies the thermal impact of active components embedded on a neural micro probe by solving the Penne’s bioheat equation with an external MATLAB function to determine the heat generation along the length of the probe. ...

Quick Search