See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

2013 - Allx

Vibration Analysis of the Wineglass for Glass Harp using COMSOL Multiphysics®

Teruyuki KOZUKA[1]

[1]National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

When a wineglass is touched with a wet finger along its edge, it vibrates at single frequency and you hear a clear sound. If the water is added into the glass, the sound pitch changes because the resonance frequency changes with the mass of the glass. When there are plural glasses with ... Read More

Numerical Model for Leaching and Transporting Behavior of Radiocesium in MSW Landfill

Hiroyuki ISHIMORI et al.[1]

[1]Ritsumeikan University, Kyoto, Kyoto, Japan

This paper presents the numerical simulation model for radiocesium leaching and transporting behavior in municipal solid waste (MSW) landfill and discusses on the design for the required geometry and properties of the impermeable final cover and the soil sorption layer, which work for ... Read More

Temperature Measurements of a Single Gold Nanoparticle under Laser Illumination

Kenji SETOURA et al.[1]

[1]The University of Tokushima, Tokushima, Tokushima, Japan

Temperature measurement of nanoparticles (NPs) under heating is an important technique in order to achieve potential applications such as photothermal cancer therapy and nanofabrication. We implemented the method to estimate the local temperature of a laser-heated gold NP on glass ... Read More

AC Loss Computation of Single Isolated Superconducting Tapes

Batdalai SUKH et al.[1]

[1]Miyakonojo National College of Technology, Miyakonojo, Miyazaki, Japan

In this panel session we present numerical models for computing the current density, field distribution and AC losses in high-temperature superconducting tapes. The tapes have a rectangle cross section for two-dimensional geometries. The numerical models are tested by comparing the ... Read More

Simulation of Beam Propagation with Two-photon Absorption in Semiconductor Materials

Syuhei LEE et al.[1]

[1]Chiba University, Chiba, Chiba, Japan

We have studied ultrafast all-optical switching devices based on two-photon absorption, which are expected to have ultrafast response less than 1 ps in wideband and to be independent of polarization of light. In our laboratory, we have obtained the analytical solution for the equation of ... Read More

Analysis of the Characteristics of the Terahertz Communication Device by using the COMSOL RF Module and its Complement

Hirokazu YAMAKURA[1]

[1]Tokyo Metropolitan University, Hachioji, Tokyo, Japan

We present simulated examples of analyzing characteristics of terahertz communication devices by using the COMSOL RF module. Especially, we propose a coupled analysis method, which has a mutually complementary relationship between the numerical analysis in the COMSOL and an additional ... Read More

Interaction between Light Wave and Asymmetric Metal/Insulator/Metal (MM) Structure Coupled with Subwavelength Holes at Optical Fiber Apex

Yasushi OSHIKANE[1]

[1]Osaka University, Suita, Osaka, Japan

Electromagnetic simulation of light wave interaction at around a tip of single mode optical fiber, which is formed of circular truncated cone shape, has been studied numerically by COMSOL Multiphysics and the RF Module (and Wave Optics Module). The fiber tip has specific nanostructure of ... Read More

Analysis of Temperature Distribution in a Magnetite Catalyst Bed under Microwave Irradiation using COMSOL Multiphysics®

Dai MOCHIZUKI et al.[1]

Tokyo Institute of Technology, Yokohama, Kanagawa, Japan[1]

Dehydrogenation of ethylbenzene with a magnetite catalyst has been performed with a fixed bed flow type reactor under microwave irradiation. Microwave heating showed a temperature gradient in the catalyst bed. We analyzed an electromagnetic field and heat transfer in the microwave cavity ... Read More

Chemical Reaction under Highly Precise Microwave Irradiation

Satoshi Fujii et al.[1]

[1]Chiba University, Chiba, Chiba, Japan

Chemical reactions conducted under microwave irradiation have high reaction rates and high selectivity, but these reaction rates are not always reproducible. To achieve reproducibility, a solid-state microwave source with an ultra precise oscillator, high power amplifier module (HPA), ... Read More

Calculation in Coupling Coefficient of 1.3μm Quantum Dots Distributed Feed Back Laser with Half Etched Mesa Structure

Keishiro GOSHIMA et al.[1]

[1]Aichi Institute of Technology, Toyota, Aichi, Japan

Quantum Dots (QDs) laser is expected to have a low threshold current density and high thermal stability. We propose the QDs laser with the half-etched mesa distributed feedback (HEM DFB) structure. We accurately calculated the coupling coefficient in a HEM waveguide using the finite ... Read More