Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Self-Consistent Modeling of Thin Conducting Wires and Their Interaction with the Surrounding Electromagnetic Field

G. Eriksson[1]
[1]ABB AB, Corporate Research, Västerås, Sweden

It is demonstrated how the RF Module of COMSOL Multiphysics® can be used to approximately model thin conducting wires or cables and how they interact with a surrounding electromagnetic field. Despite being non-stringent the method can reasonably well predict currents induced by an applied electromagnetic field in wires, and networks of wires, as well as fields radiated from current-carrying ...

Investigation of a Hybrid Winding Concept for Toroidal Inductors Using 3D Finite Element Modeling

H. Schneider[1], T. Andersen[1], J. D. Mønster[1], M. P. Madsen[1], A. Knott[1], M. A. E. Andersen[1]
[1]Technical University of Denmark, Lyngby, Denmark

This paper investigates a hybrid winding concept for a toroidal inductor by simulating the winding resistance as a function of frequency. The problem of predicting the resistance of a non-uniform and complex winding shape is solved using 3D Finite Element Modeling. A prototype is built and tested experimentally to verify the simulation results. Finally, the COMSOL Multiphysics® LiveLink™ to ...

Simulation of Sample Inhomogeneity in Microwave Impedance Microscopy

T. S. Jones [1], C. R. Pérez [1], J. J. Santiago-Avilés [1],
[1] University of Pennsylvania, Philadelphia, PA, USA

Microwave impedance microscopy (MIM) is a novel mode of atomic force microscopy that can measure topography and local electrical impedance simultaneously and with nanometer spatial resolution [1]. This technique is typically used qualitatively, identifying defects in nanodevices or imaging ferroelectric domain walls, for example. However, the technique also has the potential to be used in a more ...


陆晓 [1], 温周斌 [1],
[1] 浙江中科电声研发中心,嘉善,浙江,中国

使用 COMSOL Multiphysics® 仿真轴对称扬声器一般可采用 2D 轴对称模型,但在这种坐标系下无法建立扬声器测量中常用的矩形障板模型,而选择计算安装在无限大障板上扬声器的声特性,其仿真计算结果又与常见的标准障板上的测量结果在中低频段存在较大差异。 为了使无限大障板上的仿真结果与标准障板(或其它有限大障板)上的测量结果相一致,提出一种方法,利用 COMSOL 软件的 Parameter Sweep 功能,通过多次进行 2D 轴对称的电磁场、结构力学和声学三场耦合的扬声器仿真计算及相应后处理,得到安装在有限大障板上的扬声器正前方的声特性。 采用该方法可在较短时间内比较准确地计算得到安装在任意形状的有限大障板上的扬声器的声压级和谐波失真等特性。如图1和图2所示,采用该方法得到的声压级和总谐波失真曲线(红色),与测量结果(黑色)趋势和细节都比较一致。 ...

Calculation of the Magnetic Field Intensity in a Rectangular Conductor Carrying Current in Electromagnetism Introductory Courses

J.C. Olivares-Galvan[1], I. Hernandez[2] , P.S. Georgilakis[3], and L.E. Campero[1]

[1]Universidad Autónoma Metropolitana, Azcapotzalco, Mexico, D.F.
[2]Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Guadalajara, Guadalajara, Jalisco, Mexico
[3]School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece

This paper describes a type of didactic material used when teaching electromagnetism. The purpose is to guide the students to verify the results of a Finite Element (FE) simulation using those obtained analytically. This procedure has shown to be of great help during their learning of the FE method. The example in this paper uses a 2D analytical method to estimate the magnetic field generated by ...

Using COMSOL Multiphysics in Eddy Current Non Destructive Testing Context

L. Santandrea, and Y. Le Bihan
Laboratoire de Génie Electrique de Paris, Gif-sur-Yvette, France

Eddy current testing (ECT) is widely used to check the integrity of electrically conducting parts and notably to detect flaws. It is based on the interaction between a probe and the part under testing. The finite element method (FEM) is well fitted to the modelling of these kinds of problems because of its large flexibility which allows to deal with complex probe and part configurations. In this ...

Finite Element Analysis of Superconductive Tape by Using T-Ω Formulation

H. Arab[1], S. Memiaghe[1], C. Akyel[1]
[1]Ecole Polytechnique of Montreal, Montreal, QC, Canada

This paper deals with a numerical modelling technique based on finite elements method for computing magnetic field and current density distributions in high temperature Superconducting (HTS) tapes. The model is developed using the T-ῼ formulation for which the degree of freedom (DOF) and the CPU time decreased considerably in AC losses analysis, and it is also observe that T-ῼ formulation give ...

The Effects of a Superparamagnetic Ground on the EMI Response of a Target - new

A. T. Clark[1]
[1]Research & Development, WM Robots LLC, Colmar, PA, USA

Soil’s electromagnetic properties adversely affect the performance of electromagnetic induction (EMI) sensors and if conditions are severe enough, render them useless. A simple circuit model is often used to express the electromagnetic induction response of a target analytically. This analytic model produces a response function that contains unique characteristics based on the target’s ...

Estudo Numérico da Eletroquimioterapia em Tumor Cutâneo com Diferentes Configurações de Eletrodos - new

G. Neves[1], D. Suzuki[1], J. Alvim[1], M. Rangel[2]
[1]Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
[2]Vet Câncer Oncologia Veterinária, São Paulo, SP, Brasil

A eletroquimioterapia é um tratamento de câncer que utiliza a combinação de agentes quimioterápicos e campos elétricos. A base teórica por trás dessa aplicação é a eletroporação. Esse fenômeno biológico consiste na abertura de poros na membrana celular devido à aplicação de pulsos elétricos. Este trabalho analisa o comportamento do campo elétrico gerado por pulsos elétricos aplicados em ...

关于气泡在LIMCA系统中变形的数值模拟 - new

杨文志[1], 王晓东[1]

LIMCA技术是一种原位测量高温液态金属中杂质颗粒的方法。测量的原理为:在一个小孔内外设置一对电极,并且通以电流,这样可以在孔口附近形成一个电敏感区,当杂质经过电敏感区时,通过测量电压脉冲信号以检测杂质的信息。对硬质颗粒的LIMCA技术已经有了许多研究,但实际情况下有些颗粒如气泡是可变形的,这将损害LIMCA的精度。 模型使用了 COMSOL Multiphysics® 中的“层流两相流-相场”和“电磁场”模式,气泡和液态铝以相同的初始速度向相同方向运动,同时在液态导电金属中通以电流。由于流体和气泡是运动的,流动会受到洛伦兹力的影响,所以在流场中加入由电磁场计算得到的“mef.FLtzr”和“mef.FLtzz”作为体积力源项。同时流动结构的改变也会影响电磁场,两个物理场之间存在着强耦合,需要同时求解。 数值计算结果给出了在气泡变形情况下的流场、电磁场 ...