See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2018 Collection
Acoustics and Vibrationsx

Multiphysics Simulations of Automotive Muffler

A. Prasad [1], R. C Thiagarajan [1],
[1] ATOA Scientific Technologies, Bengaluru, India

This paper deals with the numerical experiments for early prediction of muffler performance at the design stage. In this experiment, a Reactive Muffler is developed and validated numerically compared to traditional built and test process. Read More

Modeling of Ultrasonic Transducers and Ultrasonic Wave Propagation for Commercial Applications Using Finite Elements with Experimental Visualization of Waves for Validation new

D. R. Andrews[1]
[1]Cambridge Ultrasonics, Over, UK

Finite element (FE) modelling of ultrasonic propagation using COMSOL Multiphysics® simulations can be used to create images of waves. Unfortunately, in time-stepping solutions, it is possible for numerical instabilities to grow large and dominate the solution adversely. Any design of ... Read More

Lamb Waves and Dispersion Curves in Plates and It’s Applications in NDE Experiences Using Comsol Multiphysics

P. Gómez, J. P. Fernandez, and P. D. García
Hydro-Geophysics & NDE Modeling Unit
University of Oviedo
Mieres, Spain

In this paper, a model for numerically obtaining lamb wave modes and dispersion curves in plates is presented. It is shown that COMSOL Multiphysics can be employed to simulate the behavior of guided waves in dispersive plates, which is useful for NDE applications. A two dimensional ... Read More

Acoustic Wave Propagation in Water Filled Buried Polyethylene Pipes new

T. Graf[1], T. Gisler[1], P. Sollberger[1], O. Schaelli[1]
[1]School of Engineering and Architecture, Lucerne University, Horw, Switzerland

Axisymmetric acoustic waves propagating along buried water pipes have been investigated by FEM and experimentally. Universal dispersion relations of the fundamental mode were obtained as a function of the standard dimension ratio SDR and of the material surrounding the pipe (soil, air). ... Read More

PA Loudspeaker System Design Using Multiphysics Simulation

R. Balistreri [1],
[1] QSC Audio Products, LLC., Costa Mesa, CA, USA

This paper utilizes lumped circuits equivalent and pressure acoustics to simulate the behavior of a PA loudspeaker in order to improve its design. Read More

Numerical Model of the Insertion Loss Promoted by the Enclosure of a Sound Source

G. F. Greco [1], I. K. S. Hermont [1], B. P. Murta [1], T. B. Romero [1], P. H. Mareze [1], A. Lenzi [2], J. A. Cordioli [2],
[1] Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
[2] Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil

This study aims to develop and validate a finite element numerical model to represent the Insertion Loss (IL) promoted by the enclosure of a sound source. For the validation, a enclosure prototype was built in wood and the IL was measured in laboratory. The idea is to develop an ... Read More

FEM Simulation for ‘Pulse-Echo’ Performances of an Ultrasound Imaging Linear Probe

L. Spicci[1]
[1]Esaote SpA, Florence, Italy

Pulse-echo FEM simulation is seldom found in literature for ultrasound imaging array probes, since the complete modeling of such device is extremely complicated. Nevertheless, the 2D FEM described in the present work was successful, thanks to the following design procedure (see ... Read More

Modeling Metamaterials with a Time-Domain Perfectly Matched Layer Formulation

H. Assi [1], R. S. C. Cobbold [1],
[1] University of Toronto, Toronto, ON, Canada

INTRODUCTION: Perfectly matched layers (PML) have been widely used for simulating wave propagation in unbounded media to effectively avoid spurious wave reflections from the computational domain boundaries. Time-domain PML formulations, especially for elastic waves, usually use a complex ... Read More

Two- and Three-Dimensional Holey Phononic Crystals with Unit Cells of Resonators

Y.F. Wang[1][2], Y.S. Wang[1], L. Wang[2]
[1]Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing, China
[2]Department of Mechanical Engineering, Østfold University College, Halden, Norway

We show in this paper that by careful design of the geometry of the resonators, complete bandgap with relatively low center frequency can be obtained for 2D and 3D Phononic Crystals with resonators. The generation of the bandgap is due to the local resonance of the unit cell. Spring-mass ... Read More

A Multiphysics Approach to the Design of Loudspeaker Drivers

R. Magalotti [1]
[1] B&C Speakers, Bagno a Ripoli, Italy

Loudspeaker drivers are energy transducers: their main goal is to efficiently convert electrical energy to acoustic energy (sound), through the movement of mechanical parts. As such, they are prime candidates for the application of multiphysics methods and tools. The talk will outline ... Read More

1–10 of 346