Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation of a Heated Tool System for Jet Electrochemical Machining

M. Hackert[1], G. Meichsner[2], and A. Schubert[1][2]

[1]Chair Micromanufacturing Technology, Faculty of Mechanical Engineering, Chemnitz University of Technology, Chemnitz, Germany
[2]Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

Jet Electrochemical Machining (Jet-ECM) is an unconventional procedure using localized anodic dissolution for micromachining. An increasing of the electrolyte temperature will lead to an increase of the electrical conductivity of the electrolyte by about 30% and to a reduction of the dynamic viscosity of the electrolyte by about 25 %. Both will improve the process. Therefore a Jet-ECM tool system ...

A Non-isothermal Modeling of a Polymer Electrolyte Membrane Fuel Cell

H. Shin[1]

[1]Department of Mechanical Engineering, University of Michigan – Ann Arbor, Michigan, USA

Polymer electrolyte membrane (PEM) fuel cells have attracted attention as an alternative power source in various applications such as vehicles, portable supplies, and stationary power systems. A non-isothermal PEM fuel model is developed and simulated by using COMSOL Multiphysics. Although PEM fuel cells have been expected to be extensively used as an alternative power source, there have been ...

Simulation of Current Collector Corrosion Effects on the Efficiency of Molten Carbonate Fuel Cells

I. Sgura[1], F. Zarcone[2], and B. Bozzini[2]
[1]Dipartimento di Matematica, Università del Salento, Lecce, Italy
[2]Brindisi Fuel Cell Durability Laboratory, Facoltà di Ingegneria Industriale, Università del Salento, Brindisi, Italy

Corrosion and contact ohmic resistance of the stainless steel current collectors in molten carbonates is one of the greatest obstacles to widespread application of molten carbonate fuel cells (MCFC). We simulate the variation of material parameters values, accounting for the impact of corrosion of the metallic current collectors on the performance of the porous cathode. Furthermore, we couple a ...

Modeling of the Transport Phenomena in Lithium-Ion Battery Electrolytes

A. Nyman, M. Behm, and G. Lindbergh
Applied Electrochemistry, School of Chemical Science and Engineering, Royal Institute of Technology Stockholm, Sweden

Modeling of mass transport is an important step in evaluating lithium-ion battery electrolytes and understanding cell performance. For high-power applications, concentration gradients in the electrolyte lead to limiting currents, which limit the power-density of the battery. The model has been used for determining a complete set of transport and thermodynamic properties for LiPF6 dissolved in an ...

Multiphysics Simulation of an Anode-supported Micro-tubular Solid Oxide Fuel Cell (SOFC)

G. Ganzer, W. Beckert, T. Pfeifer, and A. Michaelis
Fraunhofer IKTS
Dresden, Germany

The high thermal stability and fast start-up behavior make micro-tubular solid oxide fuel cells (SOFCs) a promising alternative for small-scale, mobile power devices in the range of some Watts. To understand the transport phenomena inside a single micro-tubular SOFC, a 2-D, axi-symmetric, non-isothermal model, performed in COMSOL Multiphysics® 4.2, has been developed. Due to long current path ...

Determining Degradation in Solid Oxide Fuel Cells Electrode Materials Using COMSOL Multiphyics® Software - new

G. Cui[1], Z. Chen[1], F. Tariq[1], V. Yufit[1], N. Brandon[1]
[1]Imperial College London, London, UK

Solid Oxide Fuel Cells (SOFCs) are one of the most attractive technologies for meeting our future energy demands. They promise the efficient conversion of chemical to electrical energy and are a growing area of both academic and industrial interests. Typical electrode-supported SOFCs consist of three key components, two porous functional electrode layers (anode and cathode) and one dense ...

Numerical and Experimental Study of Flow, Heat Transfer and Concentration in a Scaled-up Fuel Cell Anode Channel Model

J. C. Torchia-Nüñez[1], and J.G. Cervantes-de-Gortari[1]

[1]Department of Thermal Engineering, National University of Mexico, UNAM, Mexico City, Mexico

Flow, concentration and temperature fields are studied with numerical and experimental methods inside a scaled-up fuel cell anode channel model. The low aspect ratio channel has a porous medium as the inferior wall where a mixing of different pH solutions occurs. Chromatic change of phenolphthalein is used to visualize concentration field and Particle Image Velocimetry (PIV) is used to visualize ...

Optimizing Fuel Cell Design with COMSOL Multiphysics

Chin-Hsien Cheng[1]
[1]Renewable Energy RD Center, Chung-Hsin Electric & Machinery, Taiwan

Proton exchange membrane fuel cells (PEMFCs) were investigated using COMSOL Multiphysics with the AC/DC Module and Chemical Engineering Module. Simulation may be used to increase the performance while decreasing the cost of the catalyst later (CL). Experimental validation of single and multi-layer CL was performed for varied PBI electrolyte content. The validated model was used to investigate the ...

Thermal Integration of Coupled SOFC System with a High-Performing Metal Hydride Storage

A. Mossadegh Pour[1], A. Dhira [1], R. Steinberger-Wilckensa[1]
[1]Department of Chemistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom

Auxiliary Power Units can play an important role in reducing vehicle emissions, especially in diesel and kerosene driven vehicles. In conventional vehicles the electricity supply comes from a generator that is directly coupled to the propulsion engine. New generation of fuel cell APUs exclusively use Solid Oxide Fuel Cells with some developments in high temperature polymer electrolyte membranes ...

Dependence of the Current Density Distribution with Flow Channel Geometry in a Half-Cell Model - new

O. Beruski[1], J. Perez[1]
[1]Institute of Chemistry of São Carlos, São Carlos, SP, Brazil

The present work demonstrates that a simple half-cell model is capable of reproducing qualitatively the main features of the measurements of the current density distribution in a high-temperature polymer electrolyte fuel cell, pointing that computational modeling and simulation are an important tool in the development of such devices. Our main interests with such a model is to optimize working ...

Quick Search