See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

Batteries, Fuel Cells, and Electrochemical Processesx

Electrochemical Impedance Spectroscopy of a LiFePO4/Li Half-Cell

M. Cugnet[1], I. Baghdadi[1], M. Perrin[1]
[1]INES - CEA, Grenoble, France

This study demonstrates that a multiphysics model of a LiFePO4/Li half-cell can be applied to simulate the impedance results from an EIS. However, it implies that the double layer capacitance has to be taken into account, since it is responsible of the semi-circle in the impedance ... Read More

Tertiary Current Distributions on the Wafer in a Plating Cell

L. Tong[1]
[1]Keisoku Engineering System Co., Tokyo, Japan

The tertiary current distributions on the wafer in a plating cell are studied in this work. An acid copper sulfate electrolyte composed of CuSO4/5H2O of 2.4 g/L and H2SO4 of 90 g/L is taken into account for copper deposition on the wafer. The solution of shear-plate agitating fluid ... Read More

Numerical Simulation of Electrolyte-Supported Planar Button Solid Oxide Fuel Cell

A. Aman[1], R. Gentile[1], Y. Chen[1], X. Huang[2], Y. Xu[1], N. Orlovskaya[1]
[1]Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
[2]Department of Mechanical Engineering, University of South Carolina, Columbia, SC, USA

Solid oxide fuel cells (SOFCs) are electrochemical conversion devices that utilize ceramics as their electrolyte material for oxygen conduction. Compared to other types of fuel cells, they operate at relatively high temperatures, typically 400°C to 1000°C, and have an electrical ... Read More

Modeling Proton Transport in Hydrophobic Polymeric Electrolytes

M. Andrews[1]
[1]Caribbean Industrial Research Institute, Calibration Laboratory, University of the West Indies, St. Augustine, Trinidad and Tobago

The Polymer Electrolyte Membrane fuel cell is one of the most promising green technologies for addressing portable, as well as transportation power needs. However, the science behind the fuel cell, in many regards, is still an enigma, and even more so, with the vast numbers of novel ... Read More

Application of COMSOL Multiphysics in the Simulation of Magnesium Refining and Production

X. Guan[1], E. Gratz[1], U. Pal[1]
[1]Division of Materials Science and Engineering, Boston University, Brookline, MA, USA

Computational fluid dynamics (CFD) modeling is a useful tool to gain an insight into various high temperature metallurgical processes such as the magnesium refining and the magnesium solid oxide membrane (SOM) electrolysis. In both processes, argon gas was used to stir the molten salt ... Read More

Constructing COMSOL Models of a Bacteriological Fuel Cell

R. Coker[1], J. Mansell[1]
[1]NASA - Marshall Space Flight Center, Huntsville, AL, USA

We have started constructing preliminary design COMSOL models of a bacteriologically driven \'fuel cell\' that is intended to process waste products, such as carbon dioxide and brine, from a crewed vehicle. At this early stage, this complex system is reduced to two electrodes separated ... Read More

Parametric Study of Electrolyte-Supported Planar Button Solid Oxide Fuel Cell

A. Aman[1], R. Gentile[1], Y. Xu[1], N. Orlovskaya[1]
[1]Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL, USA

Fuel cells are devices that convert chemical energy of a fuel into electrical energy through electrochemical processes. One of the types of fuel cell is the Solid Oxide Fuel Cell (SOFC) that uses solid ceramics for electrolytes. Numerical simulation involves constructing a mathematical ... Read More

Modeling a Non-Flooding Hybrid Polymer Electrolyte Fuel Cell and Related Diffusion-Migration-Reaction Systems

B.E. McNealy[1], J.L. Hertz[1]
[1]University of Delaware, Newark, DE, USA

Introduction: Understanding the mass and charge transport behavior of heterogeneous systems that include diffusion, migration, and reaction of ions is important in fuel cells, batteries, and other electrochemical applications. Here, a numerical model for charged species transport and ... Read More

Numerical Modeling of Pit Growth in Microstructure

S. Qidwai[1], N. Kota[2], V. DeGiorgi[1]
[1]Naval Research Laboratory, Washington, DC, USA
[2]Science Applications International Corporation, Washington, DC, USA

Pitting corrosion is a complex phenomenon where rates of: i) chemical reactions, ii) diffusion of various species involve in those reactions, and iii) species dissolution at the metal-electrolyte interface are fully dependent on each other, except under special conditions or assumptions. ... Read More

Modeling the Effect of Discrete Distributions of Platinum Particles in the PEM Fuel Cell Catalyst Layer

C.F. Cetinbas[1], A.K. Prasad[2], S.G. Advani[1]
[1]Center for Fuel Cell Research, Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
[2]University of Delaware, Newark, DE, USA

In this study, the basic catalyst layer (CL) structure, consisting of carbon-supported Pt particles (C|Pt) and an ionomer binder, is investigated numerically by using COMSOL. The significance of modeling discrete Pt particles on the carbon support is highlighted by comparing the cell ... Read More