Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling and Optimization of a Mg-Metal Hydride Rectangular Tank in the Hydriding Process

E.I. Gkanas[1], S.S. Makridis[1], A.K. Stubos[2], A. Lopez[3], J. Folch[4], G. Noriega[4]
[1]Materials for Energy Applications Group, Department of Mechanical Engineering, University of Western Macedonia, Greece
[2]Environmental Technology Laboratory, Institute of Nuclear Technology and Radiation Protection, NCSR “Demokritos”, Greece
[3]Universidad Politécnica De Cataluña, Barcelona, Spain
[4]Cidete INGENIEROS, Barcelona, Spain

Hydrogen storage can be considered as a key factor in the development of hydrogen economy. Hydrogen storage in a magnesium hydride MgH2 is a very promising technique for numerous of reasons. Magnesium is abundant, relatively cheap, life – friendly , weight storage capacity of 7.6% and low price of Mg metal. A simulation work is presented in order to study the absorption kinetics of a Mg – ...

Perforation Effect on a Rectangular Metal Hydride Tank for Hydriding and Dehydriding Process

E. Gkanas[1][2], S. Makridis[1][2], E. Kikkinides[1], A. Stubos[2]
[1]Department of Mechanical Engineering, University of Western Macedonia, Kozani, Greece
[2]Environmental Laboratory, Institute of Nuclear Technology and Radiation Protection, NCSR 'Demokritos', Agia Paraskevi, Athens, Greece

Hydrogen storage in a metal hydride bed, uses an intermetallic alloy that can absorb efficiently high amounts of hydrogen by chemical bonding resulting to metal hydrides. This alloy is capable of absorbing and desorbing hydrogen while maintaining its own structure. The heat, mass and momentum transfer in a metal-hydride reactor is mathematically described by energy, mass and momentum balance ...

Transport of Vocs through Bioflim in Biotrickling Filters

Balasubramanian P[1]
[1]Indian Institute of Technology Madras, Chennai, Tamil Nadu, India

Realising the interlinkage of nature and engineering are of paramount essential while comprehending the basics of system’s performances. Application of biotechniques in air pollution control is one such emerging scientific area, where the understandings of these complex systems demand more utilisation of computing softwares. Recently, biofiltration is a versatile biological air pollution ...

Microvascular Dysfunction in PAD Patients - new

K. Cluff[1], H. Mehraein[1], B. Jayakumar[2]
[1]Department of Bioengineering, Wichita State University, Wichita, KS, USA
[2]Department of Industrial & Manufacturing Engineering, Wichita State University, Wichita, KS, USA

Background: Peripheral arterial disease (PAD) is characterized by atherosclerotic blockages of the arteries supplying the lower extremities, which cause a progressive accumulation of ischemic injury to the skeletal muscles of the lower limbs. Despite revascularization treatment intervention some PAD patients require follow up secondary treatment due to a continued decline in limb function, ...

Analysis of Heat, Mass Transport, and Momentum Transport Effects in Complex Catalyst Shapes for Gas-Phase Heterogeneous Reactions Using COMSOL Multiphysics

A. Nagaraj[1], and P. Mills[2]

[1]Department of Electrical Engineering and Computer Science, Texas A&M University, Kingsville, TX, USA
[2]Department of Chemical and Natural Gas Engineering, Texas A&M University, Kingsville, TX, USA

The global demand for sulfuric acid has been forecast to grow at an average of 2.6% per year from 2005 – 2010. The primary objective of this work is to analyze the performance of various heterogeneous catalyst shapes that have been proposed for the oxidation of SO2 to SO3 used in the manufacture of sulfuric acid. COMSOL Multiphysics provides a powerful numerical platform for simulation of ...

Modeling of an Oxygenation-Aided 3D Culture for Functional Beta-Cell Expansion

S. Jin[1], J. McReynolds[1], X. Li[2], J. Guan[2]
[1]Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR, USA
[2]Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA

Currently, researchers are looking for ways to mass-produce biologically functional pancreatic beta cells in vitro because of the shortage of donor tissue needed for diabetes cell therapy. The beta cells will become hypoxic if their high oxygen demands are not met. We hypothesized that the biological function of beta cells can be improved if they are cultured in a 3D collagen scaffold, which ...

Design by FEMLAB of a complex 3D solid substrate for study of microbial growth kinetics

Molin, P., Ferret, E., Gervais, P.
Laboratoire GPAB, ENSBANA, Dijon, France

A 3D model for growth of filamentous fungi on solid substrate, based on microscopic observations was developed and tested on macroscopic experimental data. Comparisons with previous models were performed. The specificity of solid substrate growth was taken into account in the model equations. Interest for FEMLAB users is the difficulties we had to define 3D complex structures, like polyhedra.

Reaction and Thermal Modeling of a Packed Bed Reactor for Hydrogen Storage

T. Williams1, K. Gazda1, A. Kindler2, Y. Huang2, D. Karner3, J. Read4
1GreenMountain Engineering, San Fransisco, CA, USA
2Jet Propulsion Laboratory, California Institute of Technology, CA, USA
3ETEC, Phoenix, AZ, USA
4ECOtality, Scottsdale, AZ, USA

Energy storage is an increasingly important area of research both for use in alternative transportation and to enable the widespread use of intermittent energy sources such as wind and solar energy. This paper presents a multiphysics model of a novel technology for hydrogen storage, in which hydrogen is stored in a packed bed of metal hydride and released by application of steam through a number ...

Modelling of Reactive Non-Isothermal Mixture Flow and its Simulation in COMSOL Multiphysics® Software - new

V. Orava[1,2], O. Soucek[1], P. Cedula[2]
[1]Charles University in Prague, Prague, Czech Republic
[2]Zurich University of Applied Sciences, Winterthur, Switzerland

I introduce a model of fluidized reactor which, in presence of heterogeneous platinum-based catalyst, decomposes liquid formic acid producing gaseous mixture of carbon dioxide and hydrogen as the product. I treat the physical system as a (Class II) mixture of four constituents - namely formic acid (FA), Platinum micro-pellets (Pt), carbon dioxide (CO_2) and hydrogen (H_2) - which can be, without ...

Improving the Sensoring of PEM Fuel Cell by Numerical Techniques - new

S. Skoda[1], E. Robalinho[2], E. F. Cunha[1], M. Linardi[1]
[1]Instituto de Pesquisas Energéticas e Nucleares - IPEN/CNEN-SP, São Paulo, SP, Brazil
[2]Universidade Nove de Julho - UNINOVE, São Paulo, SP, Brazil

The use of numerical techniques in PEM fuel cell sensoring represents an advantage of project engineering, reducing the costs and accelerating the manufacturing of prototypes. In this work some numerical responses are shown, relating to numerical sensoring of water and oxygen mole fractions at cathode of a 5 cm² of geometric area PEM fuel cell. The need to recognize a geometric figure of merit ...

Quick Search