Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Acoustic Scattering through a Circular Orifice in Low Mach Number Flow

S. Sack [1], M. Abom [1]
[1] KTH, the Royal Institute of Technology, Stockholm, Sweden

The acoustic scattering through a circular orifice plate in a duct with low Mach number flow (M=0.1) is computed using the Linearized Navier-Stokes physics interface of COMSOL Multiphysics®. The work by Kierkegaard et al. is extended to account for higher order acoustic modes, i.e., behind the cut-on frequency of the first radial duct mode. Orifice flows tend to create a sharp separation zone at ...

Low Reynolds Number Flow Around a Flying Saucer Micro Air Vehicle

S. Cortés[1], D. Güemes[1], R. Ávila[1]
[1]Universidad Nacional Autónoma de México, Mexico City, Mexico

The study of low Reynolds number flow around air vehicles of the order of centimeters. According to DARPA, a NAV is defined as a vehicle with 7.5 cm of length and weight of 20 grams. We calculated the flow around a small length scale 3D rigid body with complex geometry. Firstly we perform the numerical simulation of the two dimensional flow around a circular cylinder for 30< ReD

Boundary Value Effects on Migration Patterns in Hydraulically Fractured Shale Formations - new

T. Aseeperi[1]
[1]Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA

During the hydraulic fracturing process, there can be possible re-activation of closed/sealed faults and natural fractures in the formation, which may lead to changes in the boundary conditions of the reservoir. While study models of shale gas formations have utilized the concept of a closed reservoir in order to optimize the production of gas in the well-bore, this assumption cannot be adopted ...

Control of Real Distributed Parameter Systems Modeled by COMSOL Multiphysics® Software - new

C. Belavý[1], G. Hulkó[1], S. Lipár[1], B. Barbolyas[1]
[1]Institute of Automation, Measurement and Applied Informatics, Faculty of Mechanical Engineering, Slovak University of Technology in Bratislava, Bratislava, Slovak Republic

In the paper, first a basic concept of the engineering approach for modeling and control of distributed parameter systems (DPS) based on interpretation of controlled systems as lumped input and distributed output systems (LDS) is introduced. Next, FEM modeling of temperature fields in casting mould and extruder body as real DPS by means of the software environment COMSOL Multiphysics® is ...

Reynolds Number and Geometry Configuration Effect on Secondary Flows in S-Shaped Circular Bends

O. Ayala [1], M. F. Degenring Oliveira [2], P. Loures [2],
[1] Department of Engineering Technology, Old Dominion University, Norfolk, VA, USA
[2] Brazil Scientific Mobility Program, CAPES, Brasilia DF, Brazil

Reynolds Numbers effect: In the first bend, the higher the Reynolds number, the longer the first pair of vorticities stays attached to the wall. In the second bend, the higher Reynolds Numbers, the secondary flow from the first bend dominates. Curvature Radius effect: The smaller the curvature radius is, the stronger the vorticity magnitude is, and longer it will take for the second pair of ...

Magneto-Hydrodynamic Numerical Study of DC Electromagnetic Pump for Liquid Metal

A. Daoud, and N. Kandev
Institut de recherche d'Hydro-Quebec (LTE), Shawinigan, Quebec, Canada

The electromagnetic pumping (EMP) of electrically-conducting fluid is of growing interest for many industrial applications requiring precise flow control, enabling stopping or reversing flow direction without any moving parts or mechanical devices. Presented in this work are the results of a 3D numerical magneto-hydrodynamic (MHD) simulation of direct current (DC) EMP for liquid ...

Cooling Study of Baffles Integration in the Molding Industry

B. Noailles [1] , S. Meunier [1], V. Bruyere [2]
[1] RocTool, Savoie Technolac, Module R, France
[2] SIMTEC, France

In the molding industry, high productivity rate, low energy consumption, large 3D parts, and homogeneous temperature distribution are the main targets. The 3iTech® inductive technology developed by RocTool ensures both good temperature homogeneity and short heating time. Conventionally, to guarantee efficient cooling, a turbulent water flow is directly integrated into the mold. Ideally, to cope ...

Numerical Study of the Self-ignition of Tetrafluoroethylene in a 100-dm3-reactor

F. Ferrero[1], M. Kluge[1], R. Zeps[1], T. Spoormaker[2]
[1]BAM Federal Institute for Materials Research and Testing, Berlin, Germany
[2]Chairman PlasticsEurope Fluoropolymers TFE Safety Task Force, Du Pont De Nemours, Dordrecht, The Netherlands

The self-ignition of tetrafluoroethylene (TFE) caused by contact with hot surfaces has been analyzed with the help of simulations performed with COMSOL Multiphysics®. The current study focuses on large-scale heated reactors for the industrial production of polytetrafluoroethylene (PTFE) from TFE at high pressures. Simulations of the self-heating and consequent self-ignition of TFE in a 100-dm3 ...

Pore-Level Bénard–Marangoni Convection in Microgravity

P. Mohammadmoradi [1], A. Kantzas [1],
[1] University of Calgary, Calgary, AB, Canada

Pore-level displacement of heavy-oil during thermal operations such as SAGD and CSS is a complex multi-scale phenomenon. As gravity drainage is the main depletion mechanism within the intergranular pore space, the surface tension-related phenomena are dominant in intra-granular micro-pores. Here, a multidisciplinary study is conducted to investigate the effect of temperature on pore-level ...

Simulating Forced Convection in a Bingham Plastic Fluid

E. Tejaswini [1], B. Sreenivasulu [1], B. Srinivas [1],
[1]Gayatri Vidya Parishad College of Engineering, Visakhapatnam, Andhra Pradesh, India

In this work, the heat transfer characteristics of two heated cylinders of square cross-section immersed in a streaming Bingham plastic medium have been studied. The governing differential equations (continuity, momentum and thermal energy) have been solved numerically over wide range of conditions as: plastic Reynolds number, 0.1 ≤ Re ≤ 40, Prandtl number, 1 ≤ Pr ≤ 100, Bingham number, 0 ≤ Bn ≤ ...