Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

A Computational Approach for Optimizing the First Flyer Using COMSOL Multiphysics

A.H. Aziz[1], H. Pourzand[1], A.K. Singh[1]
[1]Pennsylvania State University, University Park, PA, USA

COMSOL Multiphysics software was used to structurally optimize the Wright brothers’ flyer. The flyer was drawn in SolidWorks, imported and meshed in COMSOL. COMSOL Solid Mechanics module was used to analyze the flyer. Four of the sixteen struts were removed yet the structural integrity of the flyer was maintained. COMSOL Laminar Flow module was used to compute the aerodynamic forces and ...

Hydro-Mechanical Modelling of Infiltration Test for a Bentonite-Sand Mixture: Model Verification and Parameter Identification

M. Hasal[1], R. Hrtus[1], Z. Michalec[1], R. Blaheta[1]
[1]Institute of Geonics AS CR, Ostrava, Czech Republic

The first aim of our work is to create a hydro-mechanical model (HM) of unsaturated fluid flow in bentonite-sand mixture (BSM) MX-80. The second aim is to validate and calibrate the developed model by using the data from a laboratory infiltration test of BSM. The used multi-physics model combines Richards type unsaturated flow with diffusive vapour flow and (nonlinear) elastic response of the ...

Mean Flow Augmented Acoustics in Rocket Systems - new

S. Fischbach[1]
[1]NASA Marshall Space Flight Center / Jacobs ESSSA Group, Huntsville, AL, USA

Combustion instability in solid rocket motors and liquid engines has long been a subject of concern. Recent advances in energy based modeling of combustion instabilities require accurate determination of acoustic frequencies and mode-shapes. Of particular interest is the acoustic mean flow interactions within the converging section of a rocket nozzle, where gradients of pressure, density, and ...

Numerical Analysis of Mass Transfer Rate in Droplet Flow at Microscopic Scales - new

S. Cito[1], T. Sikanen[1]
[1]Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland

Droplet flow at microscopic scale is often used to enhance many pharmaceuticals and industrial processes (i.e. liquid–liquid micro-extraction, nanoparticle synthesis, slow reactions in microfluidic devices, etc.). In all these processes, the mass transfer rate, at the interface between the droplets and the surrounding fluid of diluted reactants plays a key role. This work at analyzing ...

Optimization of the Gas Flow in a GEM Tracker with COMSOL and TENDIGEM Development

F. Noto[1,2], V. Bellini[1,2], E. Cisbani[3,4], V. De Smet[1,5], F. Librizzi[6], F. Mammoliti[1,2], and C. Sutera[6]
[1]Dipart. di Fisica ed Astronomia, Università di Catania, Catania, Italy
[2]INFN – Sezione di Catania, Catania, Italy
[3]IINFN – Sezione di Roma - Sanità Group, Roma, Italy
[4]Italian National Institute of Health, Roma, Italy
[5]Haute Ecole Paul-Henri Spaak, ISIB, Bruxelles, Belgium
[6]NFN - Sezione di Catania, Catania, Italy

The Gas Electron Multiplier (GEM) technology has been proven to tolerate rate larger than 50 MHz/cm2 without noticeable aging and to provide the sub millimeter resolution on working chambers up to 45x45 cm2. A new GEM based tracker is under development for the Hall A upgrade at Jefferson Lab. The chambers of the tracker have been designed in a modular way: each chamber consists of 3 adjacent ...

Parametric Investigation of the Common Geometry Shapes for Added Mass Calculation

J. H. Lee [1], A. Koushesh [1],
[1] American University of Sharjah, United Arab Emirates

This work is aimed to demonstrate how variation of geometries' parameters would affect the fluid loading effect in water using COMSOL Multiphysics and compared with analytical data. When a structure is placed in water, the interaction between the water and the structure plays an important role in determining the amount of fluid loading mass. The calculated results of added mass of the common ...

Use of COMSOL In Aerodynamic Optimization of the UNLV Solar-Powered Unmanned Aerial Vehicle

L. Dube, W. McElroy, and D. Pepper

University of Nevada, Las Vegas, Nevada, USA

We discuss the use of COMSOL Multiphysics 3.4 in the aerodynamic optimization process of the UNLV solarpowered UAV. We also address the use of COMSOL’s Multiphysics ability and how it was used within the scope of the project. In particular we highlight the development of wingtip devices, some of which are non-planar lifting surfaces, and we analyze how these changes affect the airframe ...

Design of Cooling System for Electronic Devices Using Impinging Jets

P. Lin[1], C. Chang[2], H. Huang[3], and B. Zheng[4]
[1]Mechanical and Aerospace Eng., Rutgers, The State University of New Jersey, Piscataway, NJ
[2]FTR Systems (Shanghai) Inc., Shanghai, China
[3]PolarOnyx, Inc., San Jose, CA
[4]School of Mechatronics Eng., University of Electronic Science and Technology of China, Chengdu, China

The heat sink designs using impinging liquid jets, which form stagnation flows, feature uniform heat transfer coefficients, and provide thin thermal boundary layers, are studied to reduce the heat from GPUs. Three different designs using central, micro, and uniform-cross-section (UCS) central jets are studied and simulated in COMSOL. The efficiency factors, defined as the ratio of total ...

Modeling of High-Temperature Ceramic Membranes for Oxygen Separation

J.M. Gozálvez-Zafrilla[1], J.M. Serra[2], and A. Santafé-Moros[1]

[1]Chemical and Nuclear Engineering Depart., Universidad Politécnica de Valencia, Valencia, Spain
[2]Instituto de Tecnología Química, Valencia, Spain

Oxygen transfer through ceramic membranes at high-temperature can substantially reduce costs respect to conventional separation methods. With the aim to improve the determination of the properties of the ceramic materials, a lab-scale permeation set-up was modeled using the Chemical Engineering Module of COMSOL Multiphysics®. The solution required the coupling of three domains. Gas flow was ...

Thermal and Fluid-dynamical Optimisation of Passengers Comfort in a Touring Bus Cabin

G. Petrone[1], G. Fichera[2], and M. Scionti[1]
[1]Bus-Engineering S.r.l., Catania, Italy
[2]Department of Industrial and Mechanical Engineering, University of Catania, Catania, Italy

Innovations in air-conditioning and other forms of cooling or ventilation can be viewed as technological solutions improving environmental conditions that are beneficial for human health, comfort and productivity. This study deals with a thermal and fluid-dynamics investigation of passenger comfort in a touring bus cabin. COMSOL Multiphysics® is used as a powerful design and optimization ...