Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Control the Poly-Dispersed Droplet Breakup Mode in a Droplet-based Microfluidic Device by External Electric Field

Y. Li [1], K. Nandakumar [1], M. Jain [1],
[1] Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, USA

Droplet–based microfluidics has received special research attentions in last two decades due to its superior control over fluid flow as well as other unique advantages[1]. By introducing two immiscible fluids into microfluidic systems, the reagent fluid is encapsulated inside discrete droplets or slugs of nanoliter volume [2]. Interestingly, two breakup modes, termed as “mono-dispersed” and ...

Implementation of a Thermo-Hydrodynamic Model to Predict the Morton Effect

M. Antonini [1], D. Fausti [1], M. Mor [1],
[1] PoliBrixia s.r.l., Brescia, Italy

In this paper, the "Morton Effect" is analyzed. This phenomenon is a particular kind of rotor instability due to non-uniform journal bearing heating. In this paper, an overview of the previous works has been done. After this preliminary study, a specific approach suggested by the literature has been chosen and analyzed. A thermal model, a rotor dynamic model and a stability criterion have been ...

A Preliminary Approach to the Neutronics of the Molten Salt Reactor by Means of COMSOL Multiphysics®

V. Memoli[1], A. Cammi[1], V. Di Marcello[1], and L. Luzzi[1]
[1]Nuclear Engineering Division, Department of Energy, Politecnico di Milano, Milano, Italy

The Molten Salt Reactor (MSR), proposed along with other five innovative concepts of fission nuclear reactor by the Generation IV International Forum (GIF-IV), represents a challenging task from the modeling perspective because of the strong coupling between neutronics and thermo-hydrodynamics due to liquid fuel circulation in the primary loop. In this paper COMSOL Multiphysics® is adopted to ...

Simplified CFD Modeling of Air Pollution Reduction by Means of Greenery in Urban Canyons

S. Lazzari [1], K. Perini [1], E. R. di Schio [2], E. Roccotiello [3],
[1] University of Genova, Dept. of Sciences for Architecture, Genova, Italy
[2] University of Bologna, Dept. of Industrial Engineering, Bologna, Italy
[3] University of Genova, Dept. of Sciences of Earth, Environment and Life, Genova, Italy

As known, air quality in urban areas is dramatically affected in particular by the noteworthy presence of respirable suspended particulate matter (such as PM2.5), nitrogen oxides (NOx), carbon monoxide (CO) and hydrocarbons (HC), which are mainly due to traffic-induced emissions. On the other hand, it is also known that vegetation can help restoring the environmental quality of dense urban areas ...

An Analysis of Heat Conduction with Change of Phase with Application to the Solidification of Copper

J. Michalski[1], and E. Gutirrez-Miravete[2]
[2]Rensselaer at Hartford, Hartford, Connecticut, US

The goal of this study was to determine the possibility of using the finite element in COMSOL Multiphysics program to obtain a high accuracy solution to a moving boundary problem, specifically, the solidification of copper. A one-dimensional geometry in Cartesian coordinates was used to investigate the solidification of initially liquid copper from a chilled wall maintained at fixed temperature. ...

Modeling of High-Temperature Ceramic Membranes for Oxygen Separation

J.M. Gozálvez-Zafrilla[1], J.M. Serra[2], and A. Santafé-Moros[1]

[1]Chemical and Nuclear Engineering Depart., Universidad Politécnica de Valencia, Valencia, Spain
[2]Instituto de Tecnología Química, Valencia, Spain

Oxygen transfer through ceramic membranes at high-temperature can substantially reduce costs respect to conventional separation methods. With the aim to improve the determination of the properties of the ceramic materials, a lab-scale permeation set-up was modeled using the Chemical Engineering Module of COMSOL Multiphysics®. The solution required the coupling of three domains. Gas flow was ...

Validation for a Quick and Reliable Procedure for Centrifugal Pumps Using Frozen Rotor Methodology in COMSOL Multiphysics®

D. Manenti[1], G. Tanghetti[1], R. Roveglia[1]
[1]Metelli SPA, Cologne (BS), Italy

Single stage centrifugal pumps are widely used in several engineering fields such as: room conditioning, energetic cycles, automotive industry, home care, etc. Thus, the possibility of simulate their behaviour, in terms of pressure increase and mass flow rate, is helpful in reducing prototyping costs in the first design stages. The Rotating Machinery Interface is a dedicated tool implemented ...

Quantitative Assessment of Secondary Flows of Single-phase Fluid through Pipe Bends

Z. Kaldy [1], O. Ayala [1],
[1] Department of Engineering Technology, Old Dominion University, Norfolk, VA, USA

Single-phase fluid flow was simulated passing through various three dimensional pipe elbows. The simulations varied by Reynolds number, curvature ratios, and sweep angles and were all conducted using the k-ε model available in COMSOL Multiphysics® software. The intent of this research was to qualitatively assess the flow characteristics under several different conditions. Many similarities were ...

Numerical Analysis of the Thermal Resistance of a Multi-Layer Reflective Insulation Material Enclosed by Cavities under Varied Angles

R.S. Pelzers[1], A.W.M. van Schijndel[2]
[1]Former student Building Physics, Department of the Built Environment, Eindhoven University of Technology, Eindhoven, The Netherlands
[2]Chair Building Physics, Department of the Built Environment, Eindhoven University of Technology, Eindhoven, The Netherlands

A numerical analysis on the thermal performance of a sample, consisting of two cavities surrounding a Multi-Layer Reflective Insulation (MLRI) material, under various angles and for downward and upward heat flows was performed. The sample reached high thermal resistance values when placed (nearly) horizontal under an upward heat flux, while at different angles and heat flux directions the ...

Performance Evaluation of the 19th Century Clipper Ship Cutty Sark: A Comparative Study - new

C. Tonry[1], M. Patel[1], C. Bailey[1], W. Davies[1], J. Harrap[1], E. Kentley[1], P. Mason[1]
[1]University of Greenwich, London, UK

The Cutty Sark, built in 1869 in Dumbarton, is the last intact composite tea clipper ship [1]. One of the last tea clippers built she took part in the tea races back from China. These races caught the public imagination of the day and were widely reported in newspapers [2]. They developed from a desire for ‘fresh’ tea and the first ship to return with the new season’s tea could charge a higher ...