Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Use of COMSOL Multiphysics® for IAQ Monitoring in Cleanrooms

G. Petrone[1], C. Balocco[2]
[1]BE CAE & Test, Catania, Italy
[2]Department of Industrial Engineering, University of Firenze, Firenze, Italy

High levels of Indoor Air Quality (IAQ) in Operating Theatres (OT) is an important issue in order to contribute in prevention of Surgical Site Infections (SSI). Despite of specific plant layouts are applied for OT ventilation (e.g. unidirectional flow), the effective use conditions can heavily modify the design microclimate and air quality levels. Medical staff presence and movements and sliding ...

Mathematical Model of Vacuum Foam Drying

M. Sramek[1], J. Weiss[2], R. Kohlus[1]
[1]Department of Food Processing Engineering, Institute of Food Science and Biotechnology, Hohenheim University, Stuttgart, Germany
[2]Department of Meat Science and Food Physics, Institute of Food Science and Biotechnology, Hohenheim University, Stuttgart, Germany

The mathematical model is closely related to the development of a novel drying method for high viscous and sticky materials. The foamed state facilitates diffusive moisture transport and therefore accelerating the drying process. Moreover the dried porous material can be easily converted into the powder. The mathematical modelling aimed at evaluating the complex drying process as basic ...

Bobbin Tool Friction Stir Welding: A Moving Geometry Model

J. Hilgert[1], H. Schmidt[2], and J. Dos Santos[1]

[1]GKSS Forschungszentrum GmbH, Geesthacht, Germany
[2]Danmarks Tekniske Universitet, Kgs. Lyngby, Denmark

Based on the example of a bobbin tool Friction Stir Welding process model a technique to model thermal processes with a moving geometry in COMSOL is introduced. The described approach allows modeling the transient temperature fields in setups that are governed by a large relative movement of different parts of the geometry. The movement of the tool is realized in a sequence of discrete time ...

Heat and Mass Transfer in Partially Frozen Food Material

B. Watzke[1], H. Deyber[1], and H. Limbach[2]
[1]Nestlé Research Centre, Lausanne, Switzerland
[2]Research Centre, Lausanne, Switzerland

The freezing curve of the food material was extracted from Differential Scanning Calorimetry experiments. A heat conductive model was generated in COMSOL, including the thermo-physical characteristics and the phase transition behavior. The resulting temperature-time evolutions at different positions in space were in excellent agreement with our experimental data. Changing scale, the variation ...

Complex Geometry Creation and Turbulent Conjugate Heat Transfer Modeling

I. Bodey[1], R. Arimilli[1], and J. Freels[2]
[1]Dept. of Mechanical, Aerospace and Biomedical Eng., The University of Tennessee, Knoxville, TN
[2]Research Reactors Division, Oak Ridge National Laboratory, Oak Ridge, TN

The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) is an 85 MW, light-water moderated, research reactor that operates at low temperature and high pressure. The HFIR is presently scheduled to convert from a high enriched uranium fuel (HEU) to a low enriched uranium fuel (LEU) in 2019. Due to cost constraints, not all experiments will be repeated for the LEU fuel ...

Simulation of a Plastic Bottles Solar Collector

V. Bonetti[1]
[1]Ingegneria Senza Frontiere, DESE, Università di Pisa, Pisa, Italy

In the Andean region of Southern Peru, poverty and climate are extreme: at 4000mt asl, insolation is among the highest in the world but the temperature varies more than 30 degrees between day and night. At the community of Livitaca (Cuzco), the association “Ingegneria Senza Frontiere” is working on a project of bioclimatic architecture. In this context, it is devised a low cost drainback ...

Microwave Inactivation of Bacteria Under Dynamic Heating Conditions in Solid Media

S. Curet[1], M. Mazen Hamoud-Agha[1]
[1]GEPEA, UMR 6144, CNRS, ONIRIS, Université de Nantes, Nantes, France

In this study, COMSOL®4.2a is used to model a microwave heating process in a TE10 rectangular waveguide. The sample consists of a small cylindrical Ca-alginate gel (D = 8 mm, H = 10 mm) inoculated with bacteria Escherichia Coli K12. The sample is placed along the microwave propagation direction into the waveguide. Maxwell’s equations and heat transfer are coupled to a microbial inactivation ...

Investigation of Thermal Contact Gas Gap Conductance Using COMSOL Multiphysics®

J. D. Freels[1], P. K. Jain[1], C. J. Hurt[2]
[1]Oak Ridge National Laboratory, Oak Ridge, TN, USA
[2]The University of Tennessee, Knoxville, TN, USA

Our safety analysis group in the Research Reactors Division of Oak Ridge National Laboratory supports a project to investigate the production of Pu-238 isotope for missions of deep space travel in the High Flux Research Reactor. COMSOL Multiphysics® has been used to support this activity in the past, and we have successfully installed and irradiated three different target designs. The gas-gap ...

Modelling of the Wool Textile Finishing Processes

M. Giansetti[1], A. Pezzin[1], S. Sicardi[1], G. Rovero[1]
[1]Politecnico di Torino, Torino, Italy

Within wool textile industries, a very important role is played by the so-called finishing processes, in which the textile substrate undergoes steam treatments to achieve the desired level of stabilisation and appearance. Process parameters, namely temperature and moisture content, are known only at the beginning of the process but not in the textile material being treated, where the actual ...

Annealing Furnaces Modelisation for Photovoltaïc Applications

J. Givernaud[1]
[1]EMIX, St Maurice La Souterraine, France

The optimisation of dimensions, materials choice of heaters in annealing furnaces are done with COMSOL Multiphysics® in 2D-axisymetry. Heat losses sources are identified and corrective actions can be taken in function of simulation results. A power saving of more than 50% is achieved thanks to simulations.

Quick Search