Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Stress Induced by Silicon-Germanium Integration in Field Effect Transistors

R. Berthelon [1], D. Dutartre [1], F. Andrieu [2]
[1] STMicroelectronics, France
[2] CEA Leti, France

The integration of high level of stress in field effect transistors is performed through incorporation of intrinsically strained SiGe layers. With the help of COMSOL simulations, we performed two studies addressing the level of stress in the area of interest. In the first case, we analyzed the geometric effects of the SiGe film stress relaxation on the edges. In a second time, we studied the ...

Simulation of an AlN Thin Film Resonator for High Sensitivity Mass Sensors

M. Maitra [1], H. B. Nemade [1], S. Kundu [1],
[1] Indian Institute of Technology Guwahati, Guwahati, Assam, India

The objective of this paper is to show the simulation of a piezoelectric thin film device and its application as a sensor. Piezoelectric aluminum nitride thin film clamped at two ends is simulated using COMSOL Multiphysics software. The device consists of the piezoelectric thin film suspended on a cavity etched on a silicon substrate. Two metal electrodes are placed at the two fixed sides of the ...

Kinetic Investigation of a Mechanism for Generating Microstructures on Polycrystalline Substrates Using an Electroplating Process

T. Soares[1], H. Mozaffari[2], H. Reinecke[1]
[1]Universit├Ąt Freiburg, Freiburg im Breisgau, BW, Germany
[2]Hochschule Furtwangen, Tuttlingen, BW, Germany

The purpose of this study is to understand the growth mechanism of copper (Cu) films on a Cu-Zn system substrate with a pre-defined pattern. The pattern was defined by conducting a selective etching process on a two-phase polycrystalline substrate. As a result of this process, there were etched regions correspondent to beta-phase crystals and quasi non-etched regions that belong to alpha-phase ...

RFID-Enabled Temperature Sensor

I.M. Abdel-Motaleb[1], K. Allen [1]
[1]Department of Electrical Engineering, Northern Illinois University, DeKalb, IL, USA

The design of a RFID-enabled temperature sensor is described in this paper. In this sensor, a change in temperature causes structural beams to bend, which results in a proportional displacement of the plates of the capacitor. Plates\' displacement results, in turn, in changing the value of its capacitance. The capacitor of the sensor is coupled to the LC resonant network of a passive RFID tag. ...

Study of Fluid Dynamics and Heat Transfer in MEMS Structures

S. N. Das[1], G. Bose[2]
[1]Centurion University of Technology and Managment, Jatani, Bhubaneswar, Orissa, India
[2]Institute of Technical Education and Research, SOA University, Bhubaneswar, Orissa, India

This paper describes the characteristics of MEMS microchannel and various issues of its designing. Here the major parameters are pressure drop and heat transfer rate. Various structures are modeled and optimized to get a minimum pressure drop and maximum heat transfer rate. The simulation results provide the characterization for Temperature, Mass flow rate, Pressure drop and Reynolds number. ...

Study of Pull-In Voltage in MEMS Actuators

P. D. Hanasi[1], B. G. Sheeparamatti[1], B. B. Kirankumar[1]
[1]Basaveshwar Engineering College, Bagalkot, Karnataka, India

Micro cantilevers are the basic MEMS structures, which can be used both as sensors and actuators. The . The objective of this work is to study concept of pull-in voltage and how to reduce the same. Voltage is applied to upper cantilever beam and lower contact electrode is made as ground. By increasing common area between cantilever beam and contact electrode, and also by reducing thickness of ...

The Origin of Mass-change Sensitivity within Multi-layered, Non-uniform, Piezoelectrically-actuated Millimeter-sized Cantilever (PEMC) Biosensors: Vibrational Analysis through Experiment and Finite Element Modeling (FEM)

B.N. Johnson[1], and R. Mutharasan[1]

[1]Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA

A 3D finite element model (FEM) of the PEMC sensor was developed to characterize the modes of vibration that have demonstrated high sensitivity to mass-change in experimentally fabricated sensors. The fundamental bending mode of vibration and the 1st bending harmonic are predicted at 10.0 kHz and 86.8 kHz, respectively, within approximately 5 % of the experimentally measured resonances. The ...

Design of High Performance Condenser Microphone Using Porous Silicon

S. Suganthi[1], M. Anandraj[2], and L. Sujatha[1]
[1]Department of Electronics & Communication Engineering, Rajalakshmi Engineering College, Chennai, India
[2]Department of Physics, Rajalakshmi Engineering College, Chennai, India

Porous Silicon (PS) can easily be formed by electrochemical etching of silicon in HF based electrolytes at room temperature. Since, PS is compatible with silicon IC technology; it finds lot of applications in the fabrication of MEMS devices. In the current study, we discuss the design of a condenser microphone using a Silicon/ Porous Silicon composite membrane as a movable plate. The performance ...

Robust and Reliability-based Design Optimization of Electromagnetic Actuators Using Heterogeneous Modeling with COMSOL Multiphysics and Dynamic Network Models

H. Neubert[1], A. Kamusella[1], and T-Q. Pham[2]
[1]Technische Universit├Ąt Dresden, Germany
[2]OptiY e. K. Aschaffenburg, Germany

For an exemplary electromagnetic actuator used to drive a Braille printer, a design optimization was performed. The optimization involves stochastic variables and comprises nominal optimization, robustness analysis and robust design optimization. A heterogeneous model simulates the static and the dynamic behavior of the actuator and its non-linear load. It consists of a network model in ...

Single Crystal Diamond NEMS Switch

M. Liao
Optical and Electronic Materials Unit
National Institute for Materials Science

A single-crystal diamond NEMS switch was fabricated while batch production of SCD MEMS/NEMS structures were developed. The diamond NEMS switches exhibit high performance with respect to high controllability, high reproducibility, and good reliability. Modeling and simulations were made that were consistent with experiments.