Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Surface Plasmon Resonance

J. Crompton[1], S. Yushanov[1], L.T. Gritter[1], K.C. Koppenhoefer[1]
[1]AltaSim Technologies, Columbus, OH, USA

The resonance conditions for surface plasmons are influenced by the type and amount of material on a surface. Full insight into surface plasmon resonance requires quantum mechanics considerations. However, it can be also described in terms of classical electromagnetic theory by considering electromagnetic wave reflection, transmission, and absorption for the multi-layer medium. The two commonly ...

Multi-Domain Analysis of Silicon Structures for MEMS Based-Sensors

N. Bhalla[1], S. Li[2], and D. Chung[1]
[1]Chung Yuan Christian University, Chungli,Taiwan
[2]National Tsing Hua University, Hsinchu, Taiwan

Investigation in this paper aims at performing Mechanical Stress Strain analysis, Thermal, Piezoresistive and Piezoeletric analysis of Silicon Structures using COMSOL. The simulation results have been cross checked by mathematical calculation.

CVD Graphene Growth Mechanism on Nickel Thin Films - new

K. Al-Shurman[1], H. Naseem[2]
[1]The Institute for Nanoscience & Engineering, University of Arkansas, Fayetteville, AR, USA
[2]Department of Electrical Engineering, University of Arkansas, Fayetteville, AR, USA

Chemical vapor deposition is considered a promising method for synthesis of graphene films on different types of substrate utilizing transition metals such as Ni. However, synthesizing a single-layer graphene and controlling the quality of the graphene CVD film on Ni are very challenging due to the multiplicity of the CVD growth conditions. COMSOL Multiphysics® software is used to investigate ...

Extraction of Electrical Equivalent Circuit of One Port SAW Resonator Using FEM-based Simulation

A. K. Namdeo [1], H. B. Nemade [1],
[1] Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India

The paper presents a method of extraction of electrical equivalent circuit of a one port surface acoustic wave (SAW) resonator from the results of simulation based on finite element method (FEM) using COMSOL Multiphysics software. A one port SAW resonator consists of large number of periodic interdigital transducer (IDT) electrodes fabricated on the surface of a piezoelectric substrate. A ...

Numerical Analysis of the Impact of Geometric Shape Patterns on the Performance of Miniaturized Chromatography Systems

R. Winz[1], E. von Lieres[2], and W. Wiechert[1]
[1]Department of Simulation, University of Siegen, Siegen, Germany
[2]Institute of Biotechnology, Research Centre Jülich, Siegen, Germany

We have implemented a two dimensional chromatography model for the analysis and optimization of structured micro pillar arrays. Dynamic surface interaction of solved molecules is taken into account by the kinetic Langmuir model. Variations of the pillar array geometry lead to deviations in the outlet concentration profiles. These deviations cannot be described by the one dimensional models that ...

Finite Element Modeling of the Stress Field in a Cell-Seeded Microchannel

G. Zhu, and Y. Li
Lawrence Technological University, Southfield, MI, USA

Fluids used in biomedical microelectromechanical systems (BioMEMS) devices often exhibit very different flow behavior from those in bulk solutions, which in turn affects the behavior of cells and biomolecules in the device. In this work, we investigate an integrated microfluidic system for living cell culture and assay. The system can be used as a generic platform to study the behavior of ...

Study of Capacitance in Electrostatic Comb-Drive Actuators

P. Hanasi [1], B. G. Sheeparamatti [1], V. Abbigeri [1], N. Meti [1],
[1] Visvesvaraya Technological University, Belagavi, Karnataka, India

Capacitor is mainly defined as two conducting plates that can hold the opposite charges on it. These plates can be used either as a sensor or an actuator. If the relative distance between the two conductors changes as result of given input, then capacitance values will change. This results in basic of capacitive or electrostatic sensing configuration. On the other hand, if a voltage or the ...

Design of MEMS Based High Sensitivity and Fast Response Capacitive Humidity Sensor

R. Karthick, S. P. K. Babu, A. R. Abirami, and S. Kalainila
Periyar Maniammai University
Periyar Nagar
Vallam, Thanjavur
Tamilnadu, India

This paper presents the design and simulation of high sensitivity and fast response capacitive humidity sensor. Generally, the capacitive humidity sensor is made up of parallel electrode, the upper electrode being a grid with various line width and line spacing. A model is simulated using COMSOL Multiphysics. High sensitivity and fast response of the model is optimized by varying the ...

Mobility of Catalytic Self-Propelled Nanorods Modeling with COMSOL Multiphysics®

F. Lugli[1] and F. Zerbetto[1]
[1]Department of Chemistry “G. Ciamician”, Università di Bologna, Bologna, Italy

A small particle or a nano-sized object placed in a liquid is subject to random collisions with solvent molecules. The resulting erratic movement of the object is known as Brownian motion, which, in nature, cannot be used to any practical advantage both in natural systems (such as biomolecular motors) or by artificial devices. If energy is supplied by external source or by chemical reactions, ...

Design and Analysis of 3D Capacitive Accelerometer for Automotive Applications

G. Vijila, S. Vijayakumar, M. Alagappan, and A. Gupta
PSG College of Technology
Coimbatore
Tamil Nadu, India

This paper projects a novel 3D capacitive accelerometer design to identify a severe accident and initiate airbag deployment systems. It will detect the rapid negative acceleration of the vehicle to avoid the severity of the collision. Such a device demands excellent performance in terms of sensitivity, noise immunity, linearity, bias and scale factor stability over time and environmental ...