Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Small Scale Yielding Model for Fracture Mechanics - new

K. C. Koppenhoefer[1], J. Thomas[1], J. S. Crompton[1]
[1]AltaSim Technologies, LLC., Columbus, OH, USA

Computational tools based on the finite element method have been used extensively to develop solutions for elastic and elastic-plastic fracture mechanics problems. This work uses a small-scale yielding model to compare results developed from COMSOL Multiphysics® with another finite element modeling package and analytical solutions. Analysis are conducted for elastic, and elastic-plastic ...

Comparison Between Phase Field and ALE Methods to Model the Keyhole Digging During Spot Laser Welding

V. Bruyere[1], C. Touvrey[1], P. Namy[2]
[1]CEA-DAM, Is-sur-Tille, France
[2]SIMTEC, Grenoble, France

Nowadays, spot laser welding is a full-fledged part of industrial manufacturing and is routinely used due to its advantages. It generates very located temperature gradients, and therefore, induces small distortions in the pieces. The COMSOL Multiphysics® software is used to model the interaction stage of an isolated impact made with a Nd:YAG pulsed laser. The free surface evolution has been ...

CVD Graphene Growth Mechanism on Nickel Thin Films - new

K. Al-Shurman[1], H. Naseem[2]
[1]The Institute for Nanoscience & Engineering, University of Arkansas, Fayetteville, AR, USA
[2]Department of Electrical Engineering, University of Arkansas, Fayetteville, AR, USA

Chemical vapor deposition is considered a promising method for synthesis of graphene films on different types of substrate utilizing transition metals such as Ni. However, synthesizing a single-layer graphene and controlling the quality of the graphene CVD film on Ni are very challenging due to the multiplicity of the CVD growth conditions. COMSOL Multiphysics® software is used to investigate ...

Fluid Motion Between Rotating Concentric Cylinders Using COMSOL Multiphysics® Software

P. L. Mills [1], K. Barman [1], S. Mothupally [1], A. Sonejee [1],
[1] Texas A&M University - Kingsville, Kingsville, TX, USA

Introduction Fluid flow patterns in research or process-scale equipment where a fluid is contained between concentric rotating cylinders in the absence of bulk axial flow has received notable attention in the field of fluid mechanics. Annular flows occur in many practical applications, such as in the production of oil and gas, fluid viscometers, centrifugally-driven separation processes, ...

Heat Transfer and Phase Change Simulation in COMSOL Multiphysics® Software

N. Huc [1]
[1] COMSOL France, Grenoble, France

This session is devoted to phase change modeling in heat transfer simulations. The great interest in phase change comes from the outstanding thermal performance that it enables in particular for cooling or thermal protection applications. Alternatively, phase change can induce most of the energy cost in drying or cooking applications. In all of these cases, a thermal analysis is required to ...

Numerical Study on the Acoustic Field of a Deviated Borehole with 2.5D Method - new

L. Liu[1], W.J. Lin[1], H.L. Zhang[1]
[1]State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing, China

In this paper, we use the PDE interface of COMSOL Multiphysics® software to implement the 2.5D frequency wave-number domain method to investigate the wave propagation in a deviated borehole penetrating a transversely isotropic formation. A convolutional perfectly matched layer is realized to eliminate the reflections from the artificial truncation boundary. With this method, we can obtain the ...

Lennard-Jones Potential Determination via the Time-Dependent Schrödinger Equation

D. Nguemalieu. Kouetcha [1], H. Ramezani [1][2], N. Cohaut [1],
[1] Université d’ Orléans, ICMN, UMR CNRS, Orléans France
[2] Ecole Polytechnique de l' Université d’ Orléans, Orléans, France

The accurate atomic potential determination is an essential task in the molecular simulations, e.g. Grand Canonical Monte Carlo (GCMC). The ab initio simulations using the quantum mechanics would of great interest in the computational physical chemistry. The numerical simulation of the adsorption phenomenon requires knowing the interactions parameters between the atoms that make up the systems ...

Implementation of a Viscoelastic Material Model to Simulate Relaxation in Glass Transition - new

Z. Zheng[1], R. Zhang[1]
[1]Corning Incorporated, Corning, NY, USA

Introduction: Glass relaxation occurs in a range of temperature during transition from equilibrium to super-cooled liquid. Viscoelastic material model can be applied to simulate glass behavior during the glass transition regime and to predict the glass deformation and stress evolution. Viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when ...

Models of Simple Iron Cored Electromagnets - new

J. Mammadov[1]
[1]University of Manchester, Manchester, UK

This report mainly discusses the implementation and results of a project proposal, “Modelling using Finite Element Methods”. The report is devoted to implementation, which is a model of an electromagnet. The software tool that is used to model the electromagnet is COMSOL Multiphysics®, a commercial FEA package provided by the University of Manchester, Computer Science School. Additionally, the ...

Design and Analysis of a Wetting Lens for the Pinhole Cameras of a Two Phase Flow System

A. K. Reddy[1], T. Satyanarayana[1]
[1]Lakireddy Balireddy Autonomous College of Engineering, Mylavaram, A.P., India

The present work reports the fabrication process of micro lens for pinhole cameras, modeled using COMSOL Multiphysics®, by satisfying the wetting properties. Wetting is a change in contact angle between the liquid and solid surface area. The wetting properties are clearly understood in terms of forces. The two immiscible fluids were taken for the formation of fluid-fluid and wall-fluid ...

1–10 of 605