Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Numerical Investigation for the Effect of Guide Panel on Heat Transfer from Steel Containment

Priyanshu Goyal[1], I. Thangamani[1], V. Verma[1], V.M. Shanware[1], R. K. Singh[1]
[1]Bhabha Atomic Research Centre, Mumbai, India

In a nuclear reactor, the containment is the last barrier for the release of radioactivity during severe accident conditions. Containment material can be concrete or steel or steel-lined concrete. Steel containments have a high load bearing capacity and a high degree of leak tightness at higher pressures. In case of a severe accident, heat can be removed from the containment by a guide panel, ...

Modeling of Wettability Alteration during Spontaneous Imbibition of Mutually Soluble Solvents in Mixed Wet Fractured Reservoirs - new

M. Chahardowli[1], H. Bruining[1]
[1]Delft University of Technology, Delft, The Netherlands

Mutually-soluble solvents can enhance oil recovery both in completely and partially water wet fractured reservoirs. When a strongly or partially water-wet matrix is surrounded by an immiscible wetting phase in the fracture, spontaneous imbibition is the most important production mechanism. Initially, the solvent moves with the imbibing brine into the core. However, upon contact with oil, as the ...

Numerical Simulation of Thermal Runaway in a THz GaAs Photoconductor - new

S. Sarodia[1,2], W. Zhang[2], E. Brown[2]
[1]Centerville High School, Dayton, OH, USA
[2]Wright State University, Dayton, OH, USA

Ultrafast terahertz photoconductor devices, especially photomixers, are usually limited in output power by device failure thought to be caused by excessive temperatures. Therefore, understanding of thermal breakdown is essential to the study of device reliability and failure of photoconductors. We performed a series of simulations to determine the electronic and thermal thresholds responsible ...

Embedded Microfluidic/Thermoelectric Generation System for Self-Cooling of Electronic Devices - new

R. Kiflemariam[1], H. Fekramandi[1], C. Lin[1]
[1]Department of Mechanical & Materials Engineering, Florida International University, Miami, FL, USA

A 3D electro-conjugate heat transfer model was made to study an embedded microfluidic/TEG system (μF/TEG) system. An innovative embedded microfluidic/TEG system (μF/TEG) system is proposed which enables a device to be able to provide power to its cooling system eliminating external power input and resulting in energy efficient and more reliable heat removal system. The research identifies ...

Transient Simulation of an Electrochemical Machining Process for Stamping and Extrusion Dies

M. Penzel [1], M. Hackert-Oschätzchen [2], M. Kreißig [1], M. Kowalick [1], M. Zinecker [1], A. Schubert [1], G. Meichsner [3],
[1] Professorship Micromanufacturing Technology, Technische Universität Chemnitz, Chemnitz, Germany
[2] Professorship Micromanufacturing Technology, Technische Universität Chemnitz, Chemnitz, Germany; Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany
[3] Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

Precise electrochemical machining (PEM) is a non-conventional machining technology, based on anodic dissolution of metallic work-pieces. In this study an additional extension of the precise electrochemical machining with a precise angle-controlled cylinder positioning is aimed. Due to the help of the angle-controlled cylinder positioning, with PEM e.g. stamping and extrusion dies can be ...

Thermomechanical Design of a Gas Turbine Reheat Combustor Experiment Using FEM Analysis with the COMSOL Multiphysics® Software

F. M. Berger [1], M. Eser [1], T. Sattelmayer [1],
[1] Lehrstuhl für Thermodynamik, Technical University of Munich, Munich, Germany

Enhanced operational flexibility and low levels of pollutant emissions are achieved with a sequential arrangement of premixed combustion stages in gas turbines for power generation. In the second – reheat – combustion stage, hot flue gases of approximately 1500K are enriched with fuel and establish a self-igniting flame – i.e. flame stabilization occurs mainly through auto-ignition. This work is ...

Modeling Implementation of Smart Materials such as Shape Memory Alloys and Electro-Active Metamaterials

Manuel Collet
PhD
Femto-STInstitute UMR CNRS 6174 Dept Applied Mechanics,
Besancon, France

Manuel Collet is a member of the Department of Applied Mechanics of the FEMTO-ST Institute. He graduated with a degree in Mechanical Engineering from Ecole Centrale de Lyon in 1992 and obtained his PhD in 1996 about Active control of vibrating structures by mean of semi distributed piezoelectric patches. His main research lines currently involve smart structures and active Control, ...

Finite Element Analysis of Superconductive Tape by Using T-Ω Formulation

H. Arab[1], S. Memiaghe[1], C. Akyel[1]
[1]Ecole Polytechnique of Montreal, Montreal, QC, Canada

This paper deals with a numerical modelling technique based on finite elements method for computing magnetic field and current density distributions in high temperature Superconducting (HTS) tapes. The model is developed using the T-ῼ formulation for which the degree of freedom (DOF) and the CPU time decreased considerably in AC losses analysis, and it is also observe that T-ῼ formulation give ...

Oxidation of Titanium Particles during Cold Gas Dynamic Spraying

A. Malachowska[1], L. Pawlowski [1], A. Ambroziak [2], M. Winnicki [2], P. Sokolowski[2]
[1]University of Limoges, Limoges, France
[2]Wroclaw University of Technology, Wroclaw, Poland

This paper studies oxide forming on titanium, during cold gas dynamic spraying with air. This is a quite new spraying method, which can be used to spray material having high affinity for oxygen. The model allows for the diffusion of oxygen through the oxide layer, reaction on the oxide-titanium interface and expansion of oxide, due to difference in molar density. It was implemented in COMSOL ...

Time Dependent Simulations of Thermoelectric Thin Films and Nanowires for Direct Determination of their Efficiency with COMSOL Multiphysics®

M. Muñoz Rojo[1], J. Jose Romero[1], D. Ramos[1], D. Borca-Tasciuc[2], T. Borca-Tasciuc[2], M. Martín Gonzalez[1]
[1]Instituto de Microelectrónica de Madrid, Madrid, Spain
[2]Rensselaer Polytechnique Institute, Troy, New York, USA

Thermoelectric materials are one of the most promising materials for future and nowadays energy harvesting devices, as they can convert heat into electricity and vice-versa. The efficiency of thermoelectric materials is related with the figure of merit, ZT. Our work deals with the determination of the parameters that affect the measurement of the ZT with the Harman technique and the best ...