Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Multiphysical Modelling of Keyhole Formation during Dissimilar Laser Welding

I. Tomashchuk [1], I. Bendaoud [1], P. Sallamand [1], E. Cicala [1], S. Lafaye [2], M. Almuneau [2],
[1] Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université de Bourgogne – Franche Comté, France
[2] Laser Rhône-Alpes, Le Fontanil (Grenoble), France

Time-dependent multiphysical simulation of pulsed and continuous laser welding of dissimilar metals, based on Moving Mesh (ALE) approach, is proposed. Strong coupling between heat transfer, laminar compressible flow and ALE is used. The model was validated for a case of single material (Ti6Al4V alloy) and then applied for studying of keyhole dynamics and melted zone development in a case of ...

Understanding the Magnetic Field Penetration in Mesoscopic Superconductors via COMSOL Multiphysics® Software - new

I. G. de Oliveira[1]
[1]Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil

Introduction: One of the main characteristic of the superconductors is its diamagnetic response of applied magnetic fields. The superconductors refuse the penetration of magnetic field into its interior, it is the well know Meissner effect, B=0 into the superconductor sample. However when the applied field reach a determined value, the magnetic field can enter. There are two different ways of ...

COMSOL Multiphysics® Model of a Solar Dryer - new

E. C. Santos[1], J. H. Sales[1], C. Lima[2]
[1]Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
[2]Instituto Federal da Bahia, Irecê, BA, Brazil

This paper compares the efficiency of a vertical solar dryer vis-à-vis the traditional drying method by the means of a computer simulation. The said program considers geometric, thermal and mechanical effects so as to simulate heat transfer via conduction, convection and radiation. We later ran additional tests with simulated data on the greenhouses(traditional method) so as to compare the ...

Modeling a Lung-on-a-Chip Microdevice

M. J. Hancock [1], N. Elabbasi [1],
[1] Veryst Engineering, LLC., Needham, MA, USA

Organ-on-a-chip microdevices combine microfluidics, MEMS, and biotechnology techniques to mimic the multicellular architectures, tissue-tissue interfaces, physicochemical microenvironments, and vascular perfusion of the body.[1] Such devices are being developed to provide better levels of tissue and organ functionality compared with conventional cell culture systems, and have great potential to ...

Modeling of Space-Charge Effects in 3D Thermionic Devices

P. Zilio [1], W. Raja [2], A. Alabastri [3], R. Proietti Zaccaria [2]
[1] Istituto Italiano di Tecnologia, Italy
[2] Istituto Italiano di Tecnologia, Italy
[3] Rice University, USA

The formation of space charge clouds is a well known problem that affects thermionic emitters in regimes of high current emission. Although some analytical models have been presented, suitable for 1D geometries, the modeling of the problem in complex 3D structures remains a challenge due to the mutual coupling between electron trajectories and field they produce. Here we propose a model able to ...

Keyhole Behavior During Spot Laser Welding

V. Bruyere [1], C. Touvrey [2], P. Namy [1]
[1] SIMTEC, Grenoble, France
[2] CEA DAM, Is-sur-Tille, France

The formation of porosities in spot laser welding depends on complex thermo-hydraulic phenomena. To understand and control these mechanisms, the COMSOL Multiphysics® software is used to model both the interaction and cooling stages of an isolated impact made with a Nd:YAG pulsed laser. The model is based on the Phase Field method in order to apprehend the evolution of the liquid-gas interface ...

Influence of Limescale on Heating Elements Efficiency

A. Pezzin[1], M. Giansetti[1], A. Ferri[1]
[1]Politecnico di Torino, Torino, Italy

Electric resistances are widely used as heating elements in domestic and industrial equipment; since process water contains calcium carbonate and calcium bicarbonate, limescale plays an important role on global efficiency of water-heating systems. Calcium carbonate has a very low thermal conductivity (2.2 W/(m*K)) and the carbonate deposit on the heating element causes a decrease of the overall ...

Heat Conduction in Porous Absorption Layers for Thermography Applications - new

L. Helmich[1], A. Huetten[1]
[1]Bielefeld University, Bielefeld, Germany

Thermography measurements on metallic thin films are challenging due to reflections from the environment. We present a thin "gold black" absorption layer to deal with this issue. A multiphysics model is introduced to correct the experimentally obtained data for undesirable heat transfer effects between the metallic sample and the absoption layer.

Diffusion and Reaction in Fe-Based Catalyst for Fischer-Tropsch Synthesis Using Micro Kinetic Rate Expressions - new

A. Nanduri[1], P. L. Mills[1]
[1]Department of Chemical & Natural Gas Engineering, Texas A&M University, Kingsville, TX, USA

Fischer-Tropsch synthesis (FTS) is a highly exothermic polymerization reaction of syngas (CO+H2) in the presence of Fe/Co/Ru-based catalysts to produce a wide range of paraffins, olefins and oxygenates, often known as syncrude. Multi-Tubular Fixed Bed Reactors (MTFBR) and Slurry Bubble Column Reactors (SBCR) are widely employed for FTS processes. The scale-up of MTFBR is complicated by the ...

Computational Fluid Dynamics (CFD) Simulation of Multiphase Flow in Biogas Digester

V. S. Kshirsagar[1], P. M. Pawar[1]
[1]SVERI's College of Engineering, Pandharpur, Maharashtra, India

Effective suspension and settling are critical for controlling biomass retention in a biogas digester. This paper developed a Computational Fluid Dynamics (CFD) model to simulate the hydrodynamic characteristics of multiphase flow in biogas digester. This is carried out by using COMSOL Multiphysics® software for understanding the behavior of slurries of different viscosity. This study helps to ...