Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Going beyond Axisymmetry: 2.5D Vector Electromagnetics

Y.A. Urzhumov[1][,][2], N.I. Landy[1][,][2], C. Ciraci[2], D.R. Smith[1][,][2]
[1]Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
[2]Center for Metamaterials and Integrated Plasmonics, Pratt School of Engineering, Duke University, Durham, NC, USA

Linear wave propagation through inhomogeneous structures of size R?? (Fig.1) is a computationally challenging problem, in particular when using finite element methods, due to the steep increase of the number of degrees of freedom as a function of R/?. Fortunately, when the geometry of the problem possesses symmetries, one may choose an appropriate basis in which the stiffness matrix of the ...

Modeling the Interaction of Light with Plasmonic Nanoparticles

T. Gál[1], Ö. Sepsi[1], P. Koppa[1]
[1]Budapest University of Technology and Economics, Budapest, Hungary

Plasmonic nanoparticles have received increased interest due to their numerous potential applications in the field of optics and optoelectronics. Currently such metallic nanoparticles are applied in semiconductor devices, such as light emitting diodes (LEDs) and solar cells. The optical behaviour of a single plasmonic nanoparticle is can be easily described with several analytic or semianalytic ...

Surface Plasmon Polaritons Photonic Device Design and All-optical Modulation

J. Chen
Peking University, Beijing, China

Surface plasmon polaritons (SPPs), which are confined along metal-dielectric interfaces, have attracted great interest in the area of ultracompact photonic circuits due to their strong field confinement and enhancement. COMSOL Multiphysics is an efficient and powerful software package to simulate the characteristics of SPPs. In recent years, we did some works on SPPs in experiments as well as ...

Numerical simulations of heat effects compared to measurements in III-V semiconductor saturable absorbers.

LePaul, S., Yang, N., Aniel, F.
Institut d’Electronique Fondamentale, Université Paris XI – CNRS UMR 8622, Orsay

The major purpose of this communication is to share our experiences on the numerical difficulties we ended up in simulating heating effects of saturable absorbers based on III-V semiconductors with the commercial finite element software FEMLAB 3.1. Saturable absorbers are devices devoted to full optical signal regeneration in optical telecom systems. The self heating effects in the structures ...

Analysis of Super Imaging Properties of Spherical Geodesic Waveguide Using COMSOL Multiphysics

D. Grabovi?ki?[1], J.C. González[1], P. Benítez[1], J.C. Miñano[1]
[1]Cedint Universidad Politécnica de Madrid, Madrid, Spain

Negative Refractive Lens (NRL) has shown that an optical system can produce images with details below the classic Abbe diffraction limit. This optical system transmits the electromagnetic fields, emitted by an object plane, towards an image plane producing the same field distribution in both planes. Recently, two devices with positive refraction, the Maxwell Fish Eye lens (MFE) (Leonhardt et al. ...

Modeling Effects of Structural Distortions on Air-Core Photonic Band-Gap Fibers

M. J. Li, J. A. West, and K. W. Koch
Science and Technology Division, Corning Inc., Corning, NY, USA

The cross-section of a real air-core photonic band-gap fiber with structural distortions is analyzed using a vectorial finite element method and compared with an ideal structure.It is found that the properties of aircore photonic band-gap fibers are extremely sensitive to changes of the structural parameters. Structural distortions in real fibers have significant impact on fiber properties such ...

FEM Simulations of Rod-Type Photonic Crystal Slabs as Resonant Microsystems for Optical Gas Sensors

C. Kraeh, and H. Hedler
Siemens AG, Munich
Munich, Germany

We are developing a solid state gas sensor that combines a small form factor with the high sensitivity of optical gas detection. The gas sensor is based on an optical resonant microsystem that is penetrated by gas molecules. This microsystem consists of an array of vertical rods in air forming a photonic crystal. Light propagates through the photonic crystal along a line defect waveguide. For ...

Light Scattering Simulation of Nano-objects on the Surface of Silicon Wafers by 3D Finite Element Method

Y. Oshikane, T. Higashi, N. Taniguchi, M. Nakano, and H. Inoue
Dept. of Prec. Sci. and Technology
Grad. School of Eng.
Osaka University

Nanotechnology is rated as a key technology of the 21st century. In the field of nano-optics already at present, state-of-the-art scientific experiments and industrial applications exhibit nanometer to sub-nanometer design tolerances. This motivates the development and application of fast and accurate simulation tools for these fields or electromagnetic (EM) field.

Designing Silver Nanowires Invisible Cloak Based on Effective Medium Approach

Y. Xu
Soochow University, Suzhou, China

In this section, we design an invisible cloak using the composite medium of silver nanowires with elliptical cross-sections embedded in a polymethyl methacrylate host. Under the guidance of an analytical effective medium approach, we use the parameter retrieval method to design a well-performed invisible cloak, based on an empirical revised version of the reduced cloak. The cloak is numerically ...

Periodically Poled Lithium Niobate Waveguides for Quantum Frequency Conversion

J. Toney[1], J. Retz[1], V. Stenger[1], A. Pollick[1], P. Pontius[1], S. Sriram[1]
[1]SRICO, Inc., Columbus, OH, USA

This paper presents techniques for modeling annealed proton exchange (APE) and reverse proton exchange (RPE) waveguides in periodically poled lithium niobate for application to optical frequency conversion. A combination of time-dependent diffusion modeling and electromagnetic mode analysis using the RF module are used to predict the relationship between the poling period and the second harmonic ...

Quick Search