Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Multiphysics Between Deep Geothermal Water Cycle, Surface Heat Exchanger Cycle and Geothermal Power Plant Cycle

L.W. Wong[1]
[1]International Centre for Geothermal Research, Helmholtz Centre Potsdam, GFZ German Research Centre For Geosciences, Telegrafenberg, Potsdam, Germany

Within the framework of Groß Schönebeck project in the North German Basin of Germany, multiphysics between deep geothermal reservoir, boreholes, heat exchangers and power plant is crucial to study lifecycle behavior of each component thereafter a later coupling to study lifecycle and recovery of the overall geothermal system. Study is divided into geothermal water cycle, surface heat exchanger ...

Perforation Effect on a Rectangular Metal Hydride Tank for Hydriding and Dehydriding Process

E. Gkanas[1][2], S. Makridis[1][2], E. Kikkinides[1], A. Stubos[2]
[1]Department of Mechanical Engineering, University of Western Macedonia, Kozani, Greece
[2]Environmental Laboratory, Institute of Nuclear Technology and Radiation Protection, NCSR 'Demokritos', Agia Paraskevi, Athens, Greece

Hydrogen storage in a metal hydride bed, uses an intermetallic alloy that can absorb efficiently high amounts of hydrogen by chemical bonding resulting to metal hydrides. This alloy is capable of absorbing and desorbing hydrogen while maintaining its own structure. The heat, mass and momentum transfer in a metal-hydride reactor is mathematically described by energy, mass and momentum balance ...

An Innovative Solution for Water Bottling Using PET

D. Scardigno[1], A. Castellano[1], P. Foti[1], A. Fraddosio[1], S. Marzano[1], M.D. Piccioni[1]
[1]DICAR, Politecnico di Bari, Bari, Italy

Introduction: We study an innovative technology for water bottling using PET, aimed at reducing the thickness of the plastic bottles. The goals are the reduction of the amount of plastic used for a single water bottle, the reduction of the packaging costs and more environmental sustainability. The required thickness of the bottle depends on its structural function: when carried, the bottles are ...

Modeling a Novel Shallow Ground Heat Exchanger

M. Bottarelli[1], M. Bortoloni[1]
[1]Università degli Studi di Ferrara, Dipartimento di Architettura, Ferrara, Italia

Ground Heat Exchangers (GHXs) are rarely installed horizontally in linked ground source heat pumps used for space conditioning, because their energetic performance is lower than in the vertical solution. However, the horizontal one holds several advantages: it is easy to carry out and upkeep, it is more compliant with environmental regulations, and interferes marginally with groundwater systems. ...

A Multiphysics Approach to the Modeling of Biological Prosthetic Heart Valves

A. Avanzini[1], D. Battini[1], M. Berardi[1]
[1]Università degli Studi di Brescia, Brescia, Italy

The complex behavior of biological prosthetic heart valves was simulated. A multiphysics computational approach was adopted using different modules of COMSOL Multiphysics: the LiveLink(TM) interface was used to exchange the valve geometry with CAD, Structural Mechanics Module to set loads, boundary conditions and implement anisotropic hyper-elastic constitutive laws for leaflet tissue, PDE to ...

A High Power Planar Triode Oscillator Designed by Using FEM Modeling

S. Lefeuvre[1], M. Ghomi[2]
[1]EURL CREAWAVE, Labège, France
[2]CALCEM, Ste Foy d'Aigrefeuille, France

COMSOL, adding SPICE® elements into its FEM, gives the possibility of a direct modeling of oscillators: triode and load are FEM described while all the other components of the circuit are just simulated using SPICE®. The modeling is not a straight application of any module but needs the previous computation of the conductivity of the beam through the PDE interface. This paper is a bench mark ...

Thermal Adversity in Solid-State Lighting

T. Dreeben[1]
[1]OSRAM SYLVANIA, Beverly, MA, USA

COMSOL Multiphysics is used to simulate natural convection and its impact on peak operating temperatures of solid-sate lighting in thermally adverse conditions. PDE modes in the general form are used in conjunction with a thin-surface conduction formulation in the weak form. COMSOL is used to predict both temperatures and heat flows through numerous components of the configuration. Model ...

Advancements in Carbon Dioxide and Water Vapor Separations Using COMSOL

J. Knox[1], K. Kittredge[1], R.F. Coker[1], R. Cummings[1], C.F. Gomez[1]
[1]NASA - Marshall Space Flight Center, Huntsville, AL, USA

“NASA\'s Advanced Exploration Systems (AES) program is pioneering new approaches for rapidly developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit” [1]. Under the new Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project [2], efforts are focused on improving current ...

Progress in Numerical Simulation of HIIPER Space Propulsion Device

P. Keutelian[1], A. Krishnamurthy[1], G. Chen[1], B. Ulmen[1], G.H. Miley[1]
[1]University of Illinois at Urbana-Champaign, Champaign, IL, USA

HIIPER is an experimental space propulsion device using a helicon and an IEC as a plasma generation and acceleration stage, respectively. There is an experiment in progress, but for true rapid iteration and to model the performance of the engine, COMSOL is a strong candidate for fulfilling these roles and continuing with the project until its production phase. The simulation is built with very ...

Heat and Mass Transfer in Reactive Multilayer Systems (RMS)

M. Rühl[1], G. Dietrich[2], E. Pflug[1], S. Braun[2], A. Leson[2]
[1]TU Dresden, Laser and Surface Technology, Dresden, Germany
[2]IWS Dresden, Fraunhofer Institute for Material and Beam Technology, Dresden, Germany

Established joining techniques like welding, soldering or brazing typically are characterized by a large amount of heat load of the components. Especially in the case of heat sensitive structures like MEMS this often results in stress induced deformation and degradation or even damaging of the parts. A back door of this problem are Reactive Multilayer Systems (RMS). These foils consist of several ...

Quick Search

2671 - 2680 of 3646 First | < Previous | Next > | Last