Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Simulation of the Behaviour of a Knitted Structure Made of NiTi Wires to the Mechanical Loading

J. Kafka
Technical University of Liberec
Department of Engineering Mechanics
Liberec, Czech Republic

This article describes the response of the knitted fabric to the mechanical loading and how a simplified FE model can approach realistically the response of the structure to the mechanical loading. The knitted fabric is made of nitinol material, which belongs to the group of shape memory alloys. The simulations show the behaviour of this structure in unidirectional stretching and in bending ...

Finite Element Analysis of Curved Cone Corrugated Ground Plane Conical Antenna

R. Sharma, and A. Marwaha
SLIET, Longowal, Sangrur
Punjab, India

Curved cone corrugated ground plane conical antenna has been designed and analyzed using Finite Element Method. In this paper, we introduce a novel Curved cone corrugated ground plane conical antenna for ultra-wideband (UWB) applications. The antenna is composed of curved cone with narrow corrugation on finite ground plane and fed by a 50? coaxial cable. The designed antenna operates over ...

Modelling and Simulation of a Three-stage Air Compressor Based on Dry Piston Technology

M. Heidari, and P. Barrade
EPFL
Lausanne, Switzerland

The core of this modelling is to study heat transfer and fluid dynamics processes for a compression expansion system, and the main particularity is that heat transfer and air movement are due to the movement of the piston. We have implemented a \"moving mesh\" solver to compute the volume changes of the compression chamber followed by a \"Fluid dynamics\" type solver. It allows correct ...

Topology Optimization of Dielectric Metamaterials Based on the Level Set Method Using COMSOL Multiphysics

M. Otomori, and S. Nishiwaki
Kyoto University
Japan

This presentation shows a level set-based topology optimization method for the structural design of negative permeability dielectric metamaterials incorporating the level set boundary expression based on the concept of the phase field method, and its optimization algorithm implemented by COMSOL Multiphysics. Furthermore, several design examples are provided to confi rm the usefulness of the ...

Mathematical Formulation of a PEM Fuel Cell Model

E. Robalinho [1], E. F. Cunha [2], M. Linardi [2], E. I. Santiago [2],
[1] Instituto de Pesquisas Energéticas e Nucleares - IPEN/CNEN, São Paulo, SP, Brazil; and Instituto Federal do Rio Grande do Sul - IFRS, Porto Alegre, RS, Brazil
[2] Instituto de Pesquisas Energéticas e Nucleares - IPEN/CNEN, São Paulo, SP, Brazil

The idea of a friendly implementation of a mathematical formulation using specialist software was performed with the support of COMSOL Multiphysics® software with Chemical Reaction Engineering and Batteries & Fuel Cell Modules. The real problem of a Proton Exchange Membrane – PEM fuel cell modeling involves different scales, multiple variables and processes, coupling of solvers and experimental ...

New Thermo-Mechanical Fluid Flow Modeling of Multiscale Deformations in the Levant Basin

M. Belferman [1], R. Katsman [1], A. Agnon [2], Z. Ben-Avraham [1],
[1] The Dr. Moses Strauss Department of Marine Geosciences, Leon H.Charney School of marine sciences. Haifa University, Mt. Carmel, Haifa, Israel
[2] Institute of Earth Sciences, The Hebrew University, Jerusalem, Israel

The Levant has been repeatedly devastated by numerous earthquakes since prehistorical times. In order to understand the role of the dynamics of the water bodies in triggering the deformations in the Levant basin, a new theoretical thermo-mechanical model is constructed and extended by including a fluid flow component, in COMSOL Multiphysics simulation environment. The latter is modeled on a ...

A Strategy to Simulate Radio Frequency Heating Under Mixing Conditions

S. Wang [1], L. Chen [1],
[1] Northwest A&F University, Yangling, Shaanxi, China

A computer simulation model was developed using finite element-based commercial software, COMSOL Multiphysics®, to simulate temperature distributions in wheat samples packed in a rectangular plastic container and treated in a 6 kW, 27.12 MHz RF system with and without mixing conditions. The developed model was then experimentally validated by temperature distributions of three layers without ...

Optimization of Drying Step to Obtain Large, Transparent Magnesium-Aluminate Spinel Ceramics

J. Petit [1], L. Lallemant [1],
[1] ONERA, Chatillon, France

To obtain large transparent ceramic samples, we optimized the drying step process using COMSOL Multiphysics®. Indeed, green body's drying in a climate chamber is the critical step when large size and complex shape samples are needed. Then we obtained 75 mm diameter and 10 mm thickness highly transparent spinel ceramics.

Transient CFD Investigation of a Photocatalytic Multi-tube Reactor

S. Denys [1], J. van Walsem [1], J. Roegiers [1], S. Lenaerts [1],
[1] University of Antwerp, Antwerp, Belgium

As in industrial countries, people spend most of their time indoors and the stringent heat-insulation measures in combination with deficient ventilation have a negative impact on indoor air quality, one approach for abating indoor air pollution is the integration or retrofitting of a photocatalytic oxidation or PCO reactor into continuous flow. PCO technology is very cost-effective, efficient ...

Development of a Single Cell Trapping Microfluidic Device

L. Weng [1], F. Ellett [1], J. F. Edd [1], M. Toner [1,2],
[1] Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
[2] Shriners Hospital for Children, Boston, MA, USA

Array-based technologies are important for many applications in drug discovery, microbiology and cell biology. A large-scale array of single cells allows high-throughput monitoring of behaviors of individual cells in parallel, avoiding the lack of cell specificity inherent to bulk measurement methods. Here, we designed a passive-pumping microfluidic device for trapping cells in an array and used ...