Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Stress Distribution in Masonry Walls, Loaded in Plane, Simulated with COMSOL

A.T. Vermeltfoort, and J. van Schijndel
Eindhoven University of Technology, the Netherlands

The tensile strength of masonry is relatively low compared to its compressive strength and is affected by the direction of the joints and their filling. In masonry with modern thin layer mortar (joint thickness 3 to 5 mm) sometimes the head joints are left open. A total of 13 model-walls was built and for each model four general purpose mortar combinations and three thin layer mortar ...

Simulation of Photonic Crystals Particle Filling by Electrospray

A. Coll, V. Di Virgilio, S. Bermejo, and L. Castañer
Universitat Politècnica de Catalunya, Barcelona, Spain

Photonic crystals are widely used in optical applications as waveguides and band filters. Filling the periodic structural material of photonic crystals with other materials is very useful in order to change the optical properties of the devices. In this paper electrostatic COMSOL simulations describing an electrospray deposition of particles in macroporous structures are performed.

Reliability Testing for the Next Generation of Microelectronic Devices

J. Plawsky, W. Gill, M. Riley, J. Borja, and B. Williams
Rensselaer Polytechnic Institute, Troy, NY, USA

Understanding and predicting the reliability of new generations of high and low-k dielectrics is increasingly important for gate oxides and interlayer dielectrics as both films have become thinner and scaling of device operating voltages has not kept pace with the decrease in the size of the dielectrics. We have developed a series of COMSOL-based mass transfer-based models that have proven to ...

Demonstration of a Novel Surface Plasmon Based Interferometer with COMSOL

D. Carrier, and J.J. Dubowski
Université de Sherbrooke, Sherbrooke, QC, Canada

In order to provide swift and precise diagnostics, physicians and medical doctors require an adequate amount of information about the patient\'s condition. An integrated SPR (surface plasmon resonance) biosensing platform is currently developed by our research group with the aim of preserving compatibility with microfabrication techniques, open-ended surface and integrated light source. In order ...

Microfluidic Design of neuron-MOSFET based on ISFET

A. Jain[1], and A. Garg[2]
[1]BITS Pilani, Goa Campus, India
[2]Bhartiya Vidyapeeth College, New Delhi, India

An ISFET is an ion-sensitive field effect transistor used to measure ion concentrations in a solution; when the ion concentration changes, the current through the transistor will change accordingly. Here, the solution is used as a gate electrode. A voltage between substrate and the oxide surfaces arises due to an ions sheath. The surface hydrolization of the OH groups of the gate materials ...

Designing Silver Nanowires Invisible Cloak Based on Effective Medium Approach

Y. Xu
Soochow University, Suzhou, China

In this section, we design an invisible cloak using the composite medium of silver nanowires with elliptical cross-sections embedded in a polymethyl methacrylate host. Under the guidance of an analytical effective medium approach, we use the parameter retrieval method to design a well-performed invisible cloak, based on an empirical revised version of the reduced cloak. The cloak is numerically ...

Lithium-Ion Battery Simulation for Greener Ford Vehicles

D. Bernardi
Ford Motor Company

Dr. Bernardi is a Research Engineer with Ford Motor Company in Dearborn, MI. Her research focuses on the analysis and simulation of electrochemical energy-storage and conversion systems. In particular, Dr. Bernardi develops mathematical models that predict system behavior and identify governing physicochemical processes. Experimental investigations support model development, analysis, and ...

Finite Element Analysis of Curved Cone Corrugated Ground Plane Conical Antenna

R. Sharma, and A. Marwaha
SLIET, Longowal, Sangrur
Punjab, India

Curved cone corrugated ground plane conical antenna has been designed and analyzed using Finite Element Method. In this paper, we introduce a novel Curved cone corrugated ground plane conical antenna for ultra-wideband (UWB) applications. The antenna is composed of curved cone with narrow corrugation on finite ground plane and fed by a 50? coaxial cable. The designed antenna operates over ...

Design and Characterization of a MEMS Varactor

V. S. Nagaraja, N. Suma, and S. L. Pinjare
Nitte Meenakshi Institute of Technology

The tunable capacitor (variable capacitor) is one of the most important and components in filters, Phase shifters, VCO etc. A tunable capacitor can also be built using electro – thermal actuating mechanism. Compared to electro static, tunable capacitors actuated by thermal actuators have several advantages like lower driving voltages. The performance of thermal actuator becomes a key factor ...

Electrophoresis and Electroosmosis in the Intracellular Transport of Macromolecules

V. Andreev
University of Miami
Miami, FL

Electric fields are present in biological systems at multiple spatial and temporal scales. Electroosmotic flow results from the action of electric field on the electrical double layer, formed at the fluid/solid or fluid/membrane interface and characterized by its zeta-potential. For the physiological value of zeta-potential (50 mV) and a single charged protein of average size, electroosmotic ...