Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Designing Polymer Thick Film Intracranial Electrodes for use in Intra-Operative MRI Setting.

G. Bonmassar[1], and A. Golby[2]
[1]AA. Martinos Center, Massachusetts General Hospital, Charlestown, Massachusetts, USA
[2]Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA

A new type of MRI compatible intracranial electrode based on Polymer Thick Film (PTF) is presented and studied using COMSOL Multiphysics. The geometry considered was a two-dimensional cross section cut of 5 mm thick electrodes with 5 cm leads on top of a 2×10 cm slab representing Gelfilm, or the substrate. The resistive leads were compared with metallic leads to estimate the ...

Variation of the Frost Boundary below Road and Railway Embankments in Permafrost Regions in Response to Solar Irradiation and Winds 

N.I. Kömle[1] and W. Feng[2]
[1]Space Research Institute, Austrian Academy of Sciences, Graz, Austria
[2]State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Lanzhou, China

We present COMSOL solutions for a coupled gas flow and heat transfer problem, which occurs particularly when traffic pathways are constructed in high altitude and arctic regions, where the underground is frozen soil. To avoid melting of the frozen ground (which usually leads to mechanical instability) one has to find suitable measures to keep the subsurface soil and the embankment suitably cool. ...

A Study of Curved Flexures for MEMS

Minhee Jun[1], and Jason V. Clark[1]
[1]Departments of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA

Large deflection actuators are becoming increasingly important for microsystems. Since actuation forces are usually small, large deflection actuators usually require flexures with low stiffness. Rectangular serpentine flexures are often used for such actuators due to their low stiffness and large linear deflection range. In this paper we investigate the performance of curved serpentine flexures ...

The Optical Properties of a Truncated Spherical Cavity Embedded in Gold

A. Pors[1], O. Albrektsen[2], S.I. Bozhevolnyi[2], and M. Willatzen[1]
[1]Mads Clausen Institute, University of Southern Denmark, Sønderborg, Denmark
[2]Institute of Sensors, Signals and Electrotechnics, University of Southern Denmark, Odense, Denmark

The use of plasmonic effects to dramatically enhance the electromagnetic field near the surface of a metallic nanostructured surface has grown into a large research area in the effort to take advantage of the surface enhanced field. In this paper the electromagnetic field near a nano-sized truncated spherical cavity embedded in a gold substrate is investigated and modeled in 3D with COMSOL ...

Fundamental Three Dimensional Modeling and Parameter Estimation of a Diesel Oxidation Catalyst for Heavy Duty Trucks

A. Holmqvist[1] and C.U.I. Odenbrand[1]

[1]Department of Chemical Engineering, Faculty of Engineering, LTH, Lund University, Lund, Sweden

Mathematical optimization can be used as a computational engine to generate the best solution for a given problem in a systematic and efficient way. In the context of monolithic converter systems, the parameter estimation problem (or inverse problem) is solved using Partial Differential Equations (PDE)-based models of the physical system coupled with an optimization algorithm. These problems are ...

Reactor Design Improvements for a Propane Autothermal Reformer by Simulation of Momentum Flow

F. Cipitì, L. Pino, A. Vita, M. Laganà, and V. Recupero
CNR-ITAE, Messina

The paper presents a two-dimensional model to describe the gas flow in a propane autothermal reactor, developed at the CNR-ITAE Institute, and aimed to design a Beta 5 kWe hydrogen generator, named HYGen II, to be used with Polymer Electrolyte Fuel Cells (PEFCs) for residential applications. The main aim of the mathematical model was to optimize the reactor geometrical key parameters (diameter ...

Electromagnetic Wave Simulation in Fusion Plasmas

O. Meneghini[1], and S. Shiraiwa[1]
[1]Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

COMSOL has been used to model the propagation of electromagnetic waves in fusion plasmas. For the first time, a finite element method has been used to solve the wave propagation for realistic fusion plasma parameters in the lower hybrid and ion cyclotron frequency ranges. Moreover, for lower hybrid waves, a new efficient iterative algorithm has been developed to take into account the dispersive ...

Multiphysics Modelling of a Micro Valve

F. Bircher[1] and P. Marmet[1]

[1]Institute of Print Technology, Bern University of Applied Sciences, Burgdorf, Switzerland

Electromagnetic micro valves are currently developed empirically or the different physics are treated separately. To accelerate the development-process and for a better understanding of the overall system, a multiphysics simulation is built up. This simulation considers the electromagnetics, the electronics (including the control of the process), the mechanics and the fluidics with respect to the ...

Computational Micro Fluid Dynamics: Part 1: Basic Principles and Simulation

F. Schönfeld
Institut für Mikrotechnik Mainz, Fluidik und Simulation, Mainz

The development of micro-TAS, Lab-on-a-Chip-systems and micro-reactors relies on the extensive use of computational fluid dynamics (CFD). The presentation aims to highlight specific µ-fluidic features, adequate simulation methods and benefits in context with the design of microfluidic systems. A case study discusses the modeling and characterization of a microfluidic device combining ...

Surface Acoustic Wave Generation in Wurtzite and Zincblende Piezoelectric Materials

D.B. Carstensen, T.A. Christensen, and M. Willatzen
University of Southern Denmark

A surface acoustic wave (SAW) device consists of a piezoelectric material (or film) on which interdigitated transducers (IDT) are placed. Here, they are analyzed based on PZT-5H wurtzite ceramics and InSb zincblende crystals. In PZT-5H, it is possible to generate SAW’s by aligning the interdigitated transducers (IDT) with the crystal axes. In the case with InSb zincblende structures ...

Quick Search

2681 - 2690 of 3645 First | < Previous | Next > | Last