Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Model of a Heavy Metal Adsorption System using the S-Layer of Bacillus Sphaericus

J. Orjuela, and A. González
Dept. de Ingeniería Química Facultad de Ingeniería
Universidad de los Andes

A bidimensional and pseudo homogenous model was proposed for the study of mass transfer in the bioadsorption process of chromium VI in the S-layer of immobilized Bacillus sphaericus in a packed column. The implementation of such a model in COMSOL Multiphysics will be explained in detail and the final results presented. These include chromium concentration profiles along the column and its ...

Modeling of Non-Equilibrium Effects in the Gravity Driven Countercurrent Imbibition

M. Chahardowli[1], R. Farajzadeh[1], J. Bruining[1]
[1]Department of Geotechnology, Delft University of Technology, Delft, The Netherlands

One of the main mechanisms in the secondary oil migration from the source rock into oil traps is gravity driven countercurrent imbibition. Many mathematical models describe countercurrent imbibition considering local equilibrium. However, Barenblatt proposed a model to describe the effect of non-equilibrium in oil water displacement. Here, the proposed model was implemented in a gravity driven ...

Multiphysics Software Applications in Reverse Engineering

W. Wang[1], K. Genc[2]
[1]University of Massachusetts, Lowell, MA, USA
[2]Simpleware, Exeter, United Kingdom

During the past decade reverse engineering has become a common and acceptable practice utilized by many aftermarket suppliers, and even original equipment manufacturers (OEM). This presentation focuses on the applications of multiphysics software such as COMSOL and Simpleware® in reinventing the design details and manufacturing processes of an existing part in the absence of the original design ...

Simulating Thermotherapeutic Response Induced by Thermal Padding for Treating Acute Injuries

J. Kantor[1], Y. Feng[1], C. Acosta[1], E. Massingill[1]
[1]University of Texas at San Antonio, San Antonio, TX, USA

Cryotherapy and thermotherapy are common methods of treatment for acute injuries ranging from ankle sprains to complex surgery. The idea behind such treatment is that a change in temperature will reduce pain and constrict fluctuations in blood flow at the targeted area. The purpose of this study is to simulate the vascularized tissue reaction and the resulting blood flow fluctuation from thermal ...

Modeling Ferrofluid Flow in an Annular Gap Moving with Reciprocating Shaft

Y. He[1], R. Nilssen[1]
[1]Department of Electric Power Engineering, Norwegian University of Science and Technology, Trondheim, Norway

Ferrofluids have been successfully used in the seals for rotary shafts, but few studies focus on the reciprocating motion seals. Since the completely different operational regimes, previous experiences on the rotary motions could not be directly applied on the cases for reciprocating shafts. In this study, we present a simplified model to describe the process that a shaft linearly moving in a ...

Modelling of a Wool Hydrolysis Reactor - new

M. Giansetti[1], A. Pezzin[1], S. Sicardi[1], G. Rovero[1]
[1]Politecnico di Torino, Torino, Italy

The Life+ GreenWoolF project is aimed at demonstrating that green hydrolysis with superheated water is an effective way to convert wool wastes into organic nitrogen fertilizers. The core of the process is represented by the reaction tank (Figure 1) in which the hydrolyses reaction takes place. The temperature of the material during the reaction is one of the most influencing parameter and has to ...

Modelling of the Dynamical Fluorescent Micro-Thermal Imaging Experiment on the Heat Diffusion in the La5Ca9Cu24O41 Spin Ladder Compound - new

E. Khadikova[1], F. de Haan[1], P. H. M. van Loosdrecht[2]
[1]Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
[2]Department of Physics, University of Cologne, Köln, Germany

The dynamical fluorescent micro-thermal imaging (FMI) experiment has been used to investigate the phonon-magnon interaction in the 1D Heisenberg antiferromagnet La5Ca9Cu24O41. This material shows highly anisotropic heat conductivity due to the efficient magnetic heat transport along the spin ladders in the compound carried by magnetic excitations (magnons). To extract information on the phonon ...

MEMS Based Tactile Sensors for Robotic Surgery

V. Nivethitha[1], S. P. Rakavi[1], K. C. Devi[1]
[1]PSG College Of Technology, Coimbatore, Tamil Nadu, India

In this work, a piezoelectric tactile sensor will be designed and simulated using COMSOL Multiphysics®. The sensor is designed in order to assess the pressure exerted on the human body while the robotic surgery is performed. The sensor consists of a rigid and compliant cylindrical element. A circular PDMS (Polydimethylsiloxane) film is sandwiched between the rigid cylinder and the base plate to ...

Cycling-Induced Degradation of Batteries

M. Vallance [1], A. Meshkov [1], R. White [2], M. Guo [2], S. Rayman [2], L. Cai [2]
[1] GE Global Research, Niskayuna, NY, USA
[2] R.E. White & Associates, Columbia, SC, USA

Rechargeable batteries solve electrification and communication problems. As examples, hybrid battery-diesel generator power supplies efficiently power cell towers in remote locations, detached from the power grid. Large battery banks are used to load level user power requirements, reducing stress on power generation infrastructure. Batteries firm the output capacity of intermittent wind ...

Simulation of Convection in Water Phantom Induced by Periodic Radiation Heating

H.H. Chen-Mayer[1], and R. Tosh[1]
[1]Ionizing Radiation Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA

Water calorimetry is employed to establish a primary reference standard for radiation dosimetry by measuring the temperature rises in a water phantom (a cube of about 30 cm x 30 cm x 30 cm) subjected to a beam of ionizing radiation.  We use COMSOL Multiphysics to model the system using the Heat Transfer module and the Incompressible Navier-Stokes module with a geometry of 2D-axial ...

2691 - 2700 of 3695 First | < Previous | Next > | Last