Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Study of the Process, Design, and Operating Parameters Effect on the Efficiency of the Process Mill - new

A. K. Farouk[1]
[1]Department of Mathematics & Natural Science, University of Stavanger, Sandnes, Rogaland, Norway

This study is to investigate the velocity pattern and the velocity magnitude of the cuttings that is being processed in the process mill as a result of the rotating hammers. The process mill consists of a horizontal cylindrical shell equipped with renewable liners and rotating hammers for milling of drill cuttings. An F.E model of the process mill was constructed using dimensions similar to ...

Numerical Simulation of Thermal Runaway in a THz GaAs Photoconductor - new

S. Sarodia[1,2], W. Zhang[2], E. Brown[2]
[1]Centerville High School, Dayton, OH, USA
[2]Wright State University, Dayton, OH, USA

Ultrafast terahertz photoconductor devices, especially photomixers, are usually limited in output power by device failure thought to be caused by excessive temperatures. Therefore, understanding of thermal breakdown is essential to the study of device reliability and failure of photoconductors. We performed a series of simulations to determine the electronic and thermal thresholds responsible ...

Numerical Analysis on Plasmonic Nano-Cucumber Achieving Large EFs and Wide Tuneability of the Peak

A. Zare [1], E. Cutler [1], H. Cho [1],
[1] Center for Biomedical Engineering & Science, University of North Carolina - Charlotte, Charlotte, NC, USA

INTRODUCTION: Researchers in the biomedical field have recently become interested in the potential applications of plasomics. Surface plasmon resonance based on optical properties of metallic nanostructures can be used for detection of special biological targets. Gold nanostructures with different shapes and sizes have been designed to achieve high enhancement factor (EF), wide range of ...

Comparison of Magnetic Barkhausen Noise Tetrapole and Dipole Probe Designs

P. R. Underhill [1], T. W. Krause [1],
[1] Department of Physics, Royal Military College of Canada, Kingston, ON, Canada

COMSOL Multiphysics® software is used to understand the difference in behaviour of two Magnetic Barkhausen Noise (MBN) probes. The dipole probe has to be physically rotated to sample the angular distribution of the MBN. The tetrapole probe uses vector superposition to rotate the magnetic field without probe motion. Using the AC/DC Module and non-isotropic material properties, it was found that, ...

Numerical Analysis of the Flow Structure in the Continuous Casting Two-strand Tundish

M. Warzecha [1], J. Jowsa [1], A. M. Hutny [1], P. Warzecha [1], T. Merder [2]
[1] Czestochowa University of Technology, Czestochowa, Poland
[2] Silesian University of Technology, Katowice, Poland

Calculations were carried out for the water model of the investigated tundish, represented on a scale 1:3. Numerical calculations enable to estimate the fluid flow velocities, pahtlines and other parameters. Calculations were done for two different grids. Based on the results, the flow structure in the investigated tundish was obtained.

Study of Fracture Parameter for Curved Cracked Bimodular Flexural Specimen Using COMSOL Multiphysics® Software

A. Bhushan [1], S.K. Panda [1],
[1]Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, India

The formulation of bimodular stress field is based on stress dependent elasticity and the simulations have been carried out using commercial finite element software COMSOL Multiphysics® software. The complexity of the problem is enhanced due to adding bimodular stress field in the evaluation of complex J-integral ( ˆ F J ) for curve cracked geometry subjected to flexural loading. The complex J ...

Oxygen Based Diffusion Modeling of Oxidation Behaviour of Encapsulated Lipids

H. Teichmann [1], A. Linke [1], R. Kohlus [1],
[1] Process Engineering and Food Powders, University of Hohenheim, Stuttgart, BW, Germany

Encapsulation is an established technique to protect sensitive materials from environmental factors such as oxygen and light. Nutritionally beneficial fatty acids like omega 3 fatty acids are susceptible to oxidation and are therefore encapsulated by drying an oil in water emulsion. It is assumed that the wall matrix, that is surrounding the lipid droplets, acts as an oxygen diffusion barrier. ...

Multiphysics Modeling of a Minimally Invasive Tissue Ablation Methodology

J. S. Crompton [1], J. Thomas [1], K. Koppenhoefer [1],
[1] AltaSim Technologies, Columbus, OH, USA

Necrosis of human tissue can typically be obtained by exposure to temperatures below 40°C or above +50°C. However, inherent variability in tissue properties, the complexity of tissue response and dissipation of thermal energy by local perfusion or blood flow can make the development of routine, predictable in-vivo approaches to produce necrosis difficult. Although a number of thermal ablation ...

基于 COMSOL 软件的硅通孔的多物理场分析

刘永磊 [1],
[1] 西安电子科技大学北校区机电工程学院,西安,陕西省,中国

硅通孔在实现高级集成系统中起着至关重要的作用,但是其发展受到多物理场耦合效应的极大阻碍。硅通孔的多物理场耦合过程非常复杂,热场分布、电磁场分布及结构分布是相关联、相互作用的。针对硅通孔的多物理场耦合问题,本文开展了硅通孔多物理场仿真分析研究。结合国内外在硅通孔多物理场本质研究的基础上,从多物理场耦合理论出发,建立单个硅通孔的多物理场分析模型。通过运用 COMSOL Multiphysics 软件进行建模如图 1,在稳态下选择相应的焦耳热和热膨胀接口进行仿真如图 2,经影响分析确定了硅通孔的一些结构参数,如二氧化硅隔层厚度取 0.8um,硅基质厚度取 5.5um,硅通孔高度取 83.6um。最后,选择焦耳热接口进行瞬态仿真,研究了电压周期函数的幅值大小和占空比对硅通孔温度变化的影响关系。数值结果表明,随着幅值的增大,最终稳定后,温度的波动范围和最高温度都将增大如图 3;随着占空比不断增大 ...

Numerical Demonstration of Finite Element Convergence for Lagrange Elements in COMSOL Multiphysics

M. Gobbert, and S. Yang
Department of Mathematics and Statistics, University of Maryland, Baltimore, MD, USA

The convergence order of finite elements is related to the polynomial order of the basis functions used on each element, with higher order polynomials yielding better convergence orders. However, two issues can prevent this convergence order from being achieved: the lack of regularity of the PDE solution and the poor approximation of curved boundaries by polygonal meshes. We show studies for ...