Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Design and Simulation of MEMS Based Piezoelectric Vibration Energy Harvesting System

M. C. B. Kumar[1], D. B. Prabhu[1], R. Akila[1], A. Gupta[1], M. Alagappan[1]
[1]PSG College of Technology, Coimbatore, Tamil nadu, India

This paper discusses the simulation studies on a vibration based energy harvesting system to convert the undesirable mechanical vibration to useful green power. The design consists of a resonating proof mass and a spring system enclosed in housing and fixed on the source of vibration. A piezoelectric suspension acts as the transducer and generates a voltage that is used to charge the batteries ...

Multiphase Transport with Large Deformations Undergoing Rubbery-Glassy Phase Transition: Applications to Drying

T. Gulati[1], A. Datta[1]
[1]Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA

Drying of biomaterials such as foodstuffs involves mass, momentum and energy transport along with large shrinkage of the porous material, which have significant effects on their final quality. Foodstuffs exhibit non-linearity when undergoing large deformations that affect the transport process in a critical way. Thus, it becomes important to perform a two-way coupling of the multiphase transport ...

Oscillatory Thermal Response Test (OTRT) – An Advanced Method for Gaining Thermal Properties of the Subsurface

P. Oberdorfer[1]
[1]Georg-August-Universität Göttingen, Göttingen, Germany

Thermal Response Tests (TRTs) are the state-of-the-art method to obtain the thermal conductivity of the subsurface in the nearby ambience of a borehole heat exchanger (BHE). The results of TRTs are used to determine the necessary depth of the borehole and to make long time predictions about the potential of heat extraction. For a TRT, a constant heat load is injected into the subsurface and the ...

Simulation of Heat Transfer on Periodic Microstructured Surfaces for Evaporation Cooling

M. Hackert-Oschätzchen[1], R. Paul[1], M. Penzel[1], M. Zinecker[1], A. Schubert[1]
[1]Professorship Micromanufacturing Technology, Technische Universität Chemnitz, Chemnitz, Germany

Evaporative cooling is a promising cooling method for dissipating high heat fluxes in high power density applications. One possibility to enhance heat flux is a generation of microstructures into the cooler surface. This enlarges the cooler surface and systematically affects the fluid flow as well as the boiling process. In this study the geometric arrangement of cylindrical pin microstructures ...

Empirical Model Dedicated to the Sensitivity Study of Acoustic Hydrogen Gas Sensors Using COMSOL Multiphysics®

A. Ndieguene[1], I. Kerroum[1], F. Domingue[1], A. Reinhardt[2]
[1]Laboratoire des Microsystèmes et de Télécommunications/Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
[2]Laboratoire d’Électronique et des Technologies de l’Information, CEA, LETI Grenoble, France

Due to the increasing demand for hydrogen gas sensors for applications such as automation, transportation, or environmental monitoring, the need for sensitive and reliable sensors with a short response time is increasing. This paper presents an empirical model that studies the sensitivity of acoustic hydrogen gas sensors. A parametric study based on the variation of physical properties of ...

Study of the Thermal Behavior of Solar Cells Based on GaAs

N. Martaj[1,2], E. Guidicelli[2], Y. Cuminal[2], A. Perona[3], S. Pincemin[1,2]
[1]EPF-Ecole d’Ingénieurs, Montpellier, France
[2]IES, UMR5214, Université Montpellier II, Montpellier, France
[3]Laboratoire PROMES-CNRS Tecnosud, Rambla de la thermodynamique, Perpignan, France

The paper studies the thermal modeling and simulation of photovoltaic cells suitable for use in highly concentrated solar flux (> 1000 suns). The cells studied are those of GaAs kind. These cells are a very good alternative to be studied instead of more complex multi junctions cells. The objective is to find a simple and inexpensive way to remove heat from PV modules and to keep the electrical ...

Paleohydrogeological Reactive Transport Model of the Olkiluoto Site (Finland) - new

M. Luna[1], P. Trinchero[1], J. Molinero[1], J. Löfman[2], P. Pitkanen[3], L. Koskinen[3]
[1]Amphos 21 Consulting, Barcelona, Spain
[2]VTT Energy, Espoo, Finland
[3]Posiva, Eurajoki, Finland

The safety assessment of the deep geological repository for nuclear waste of Olkiluoto (Finland) requires the evaluation of the influence of the land uplift (ice withdrawal) in groundwater. With this objective in mind, we have developed a three dimensional reactive transport model of the Olkiluoto, simulating the most relevant deformation zones in a three-dimensional domain. The evolution in ...

电晕放电紫外光谱仿真与测量

庾金涛 [1], 李清灵 [1], 房陈岩 [1],
[1] 中科院上海技术物理研究所,上海,中国

随着我国国民经济的持续高速发展,生活与生产的用电量越来越大,电力行业的规模日益增大。电力设备在不正常工作时,大多会产生电弧电晕,通过检测电晕电弧等目标,就可以获知电力系统设备的损害程度。然而,目前并没有对真实的电弧电晕目标进行非光子计数方式的定量化研究。本文作者研制了一套紫外外波段的面阵成像探测系统,对实验室人工制造的高电压电弧电晕目标进行了相关的分析与实验研究。 利用 COMSOL Multiphysics® 的等离子体物理场接口的 DC 放电接口,对实验所用的天梯仪器的放电行为建模,分子碰撞数据选择大气压下的空气模型,对电晕放电辉光主要贡献的成分N2+,进行密度分布计算,结果换算成光强,得到定性的光强分布,与相机拍摄结果对比。 自制的一套紫外面阵成像系统,对由实验室高压设备在空气中产生的电弧电晕目标开展了紫外成像实验,对电弧电晕目标在 200-1000nm ...

基于 COMSOL 的 PVT 法 AlN 晶体生长仿真:温场对生长驱动力的影响研究

金雷 [1],
[1] 中国电子科技集团公司第四十六研究所,天津,中国

分别从软件模拟和晶体生长实验两方面对衬底表面的温度分布进行研究,进而达到控制 AlN 蒸气在衬底表面过饱和度的目的。理论上,结合异质形核理论(图1 (a)-(c)),采用 COMSOL Multiphysics® 模拟软件对坩埚结构的温度分布进行模拟仿真(图1(d)),模拟结果表明:复合型衬底可以显著地改变衬底表面的温度分布,进而改变衬底表面 AlN 气氛的过饱和度,实现对晶体生长驱动力[1]的控制;实验上,采用 PVT 法 AlN 晶体的生长实验验证了软件模拟结果。采用复合型衬底生长 AlN 晶体时,通过对衬底表面的温度分布调控,如图1 (c)-(g)所示,可有效地控制晶体生长驱动力,进而实现形核位置和形核数量的控制[2,3],经过 6~10 h AlN 晶体生长后,可获得较大直径的 AlN 单晶。拉曼光谱和 XRD 双晶摇摆曲线测试[4]结果表明,晶体具有很好的结晶性能。

Meshing Challenges in Simulating the Induced Currents in Vacuum Phototriode

S. Zahid [1], P. R. Hobson [1],
[1] Brunel University London, London, United Kingdom

Vacuum phototriodes (VPT) have been used as photodetectors for many years in particle physics experiments. For example, they were used in the OPAL experiment at LEP and are currently used in the endcap Electromagnetic Calorimeter of the CMS experiment, at CERN’s Large Hadron Collider. Existing VPTs are fast, low-gain devices that are able to operate in strong magnetic fields at angles up to ...