Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Analysis of Electrical Phenomena Occurring in Thermally Assisted Mechanical Dewatering Processes

A. Mahmoud, A. Fernandez, and P. Arlabosse
Ecole des Mines d’Albi Carmaux, Albi

The so-called opposite electrode pair measurement strategy is adapted in a filtration/expression cell filled with a model material packed bed. In this paper, we investigate the electrical properties of a packed bed, with particular emphasis on its overall conductivity. As a special case study we treat potassium chloride solutions, using model materials of different particle sizes.

Explicit Dosimetry for Photodynamic Therapy; Singlet Oxygen Modeling based on Finite-Element Method

Ken Kang-Hsin Wang[1], and Timothy C. Zhu[1]
[1]Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Singlet oxygen (1O2) is the major cytotoxic agent during type-II photodynamic therapy (PDT). The production of 1O2involves the complex reactions among cancer agent, oxygen molecule, and treatment laser light. The light propagation in tumor tissue is described by the diffusion equation. In this work, an optimization routine is developed to fit the [1O2]rx profile to the simulated necrosis ...

2D Extraction of Open-Circuit Impedances of Three-Phase Transformers

R. Escarela-Perez[1], E.A. Gutierrez-Rodriguez[2], J.C. Olivares-Galvan[1], M.S. Esparza-González, and E. Campero-Littlewood[1]


[1]Departamento de Energia, Universidad Autonoma Metropolitana - Azcapotzalco, Mexico D.F., Mexico
[2]Instituto Tecnologico de Aguscalientes, Aguascalientes, Mexico

This work is concerned with the study of the asymmetrical phenomenon observed in three-phase transformers during the standard short-circuit test. The purpose of our work is to see if the asymmetric measurements can be predicted with the use of 2D finite-element models. To this end, we use the AC/DC Module of COMSOL Multiphysics. A multi-port network impedance is then determined to explain the ...

COMSOL Implementation of Valet-Fert Model for CPP GMR devices

T. Xu[1], C.K.A. Mewes[1], S. Gupta[2], and W.H. Butler[1]
[1]Department of Physics and Astronomy and Center for Materials for Information Technology, University of Alabama, Tuscaloosa, Alabama, USA
[2]Department of Metallurgical and Materials Engineering and Center for Materials for Information Technology, University of Alabama, Tuscaloosa, Alabama, USA

The Giant Magneto Resistance (GMR) effect is a quantum mechanical effect which can be observed in systems consisting of thin alternating ferromagnetic and non-ferromagnetic layers. Simulation using COMSOL allows the evaluation of the magneto-resistance ratio and the electrical resistances of realistic CPP-GMR devices and opens the possibility to study new device materials and designs.

Designing B-field Coils from the Inside-Out

C.B. Crawford[1], Y. Shin[1], and G. Porter[1]
[1]Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky, USA

Traditionally the design cycle for magnetic fields involves guessing at a reasonable conductor / magnetic material configuration, using FEA software to calculate the resulting field, modifying the configuration, and iterating to produce the desired field. Our method involved solving the classical Laplace equation on regions with imposed boundary conditions, which was implemented straightforwardly ...

Finite Element Analysis of Microscale Luminescent Glucose Sensors in the Skin Dermis

S. Ali[1], and M. McShane[1]
[1]Department of Biomedical Engineering, Texas A&M University-College Station, Texas, USA

With the rising predominance of diabetes, successful management of blood glucose levels is increasingly important. Key efforts have focused on the development of optical microscale glucose sensing systems based on the encapsulation of glucose oxidase within microspheres coated with polyelectrolyte multilayer nanofilms. A two-substrate mathematical model of microscale optical glucose sensors in ...

Propagation of Crevice Corrosion by Numerical Modelling

A. Proust[1], G. Girardin[1], B. Vuillemin[2], P. Combrade[1], and R. Oltra[2]
[1] AREVA NP - Centre Technique - Département Corrosion-Chimie, Le Creusot
[2] Université de Bourgogne - Laboratoire de Recherche sur la Réactivité des Solides

The most common case of crevice corrosion occurs on passive materials such as stainless steels, in oxidizing-chloride environments. A flexible crevice propagation model has been developed to allow parametric studies of the solution. Our main results allow us to establish diagrams of stability of solid and gas phases within the crevice and to evaluate the influence of the external ...

Numerical simulation of separation flows with FEMLAB 3.1

Carlo Gualtieri
University of Napoli Federico II
Naples, Italy

Flow separation is a common and interesting phenomenon in fluid mechanics with significant effects in practical applications. Thus, it has been the focus of intensive study for many years. The objective of this presentation is to investigate laminar separation flows over a backward-facing step and over a rectangular trench using COMSOL. --------------------------------- Carlo Gualtieri ...

From PDE Toolbox to COMSOL Multiphysics 3.2: Past, Present and Future of Teaching and Research in Thermo-fluids

Enrico Nobile
Università di Trieste
Trieste, Italy

This presentation introduces the history of thermo-fluidics research and teaching and of COMSOL Multiphysics; from its beginnings as the PDE Toolbox until now. --------------------------------- Keynote speaker's biography: Enrico Nobile is Full Professor of thermodynamics and heat transfer at DINMA, University of Trieste. Prof. Nobile is author or co-author of more than 70 publications in ...

An Efficient Approach to Identifying a Complete Photonic Band Gap in Two-dimensional Photonic Crystals with Omnidirectional Light Propagation

Ming-Chieh Lin
Assistant Professor
NanoScience Simulation Laboratory
Department of Physics
Fu Jen Catholic University
Taipei, Taiwan

Omnidirectional light propagation in two-dimensional (2D) photonic crystals (PCs) is investigated. An efficient approach to identifying a complete photonic band gap (PBG) in 2D PCs has been developed. The in-plane band structure of 2D photonic crystals is calculated by an adaptive finite element method, as implemented in FEMLAB. Adopting the suitable boundary conditions, the eigenvalues can be ...

Quick Search

3161 - 3170 of 3645 First | < Previous | Next > | Last