Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Optimization of Active Packaging for Microwaveable Food Products Using COMSOL Multiphysics® - new

S. Landa[1], A. Bardenstein[1]
[1]Danish Technological Institute, Taastrup, Denmark

Upon operation, the magnetron of a conventional microwave oven induces a pattern of standing electromagnetic waves in the oven cavity. Interactions with the field define the amount of energy absorbed in a part of a food object within the cavity. The well-known inhomogeneous heating produced in a microwave oven is partially an effect of the standing waves’ natural nodes and antinodes and ...

Simulation of Air Flow Through Ventilation Ducts - new

E. Dalsryd[1]
[1]KTH Royal Institute of Technology, Stockholm, Sweden

In this report I study the airflow through ventilation ducts. By numerical simulation, the so-called k-factor has been estimated. The k-factor is the quotient of the airflow volume and the square root of the pressure drop over the duct. A two dimensional axial symmetric model has been used to simulate an iris damper connected to a straight pipe. A three dimensional model has been used to ...

Constraints on Ocean Floor Permeability from Hydrothermal Modelling - new

S. Titarenko[1], A. McCaig[1]
[1]School of Earth and Environment, University of Leeds, Leeds, UK

The Atlantis massif is a domal submarine seamount close to the mid-Atlantic Ridge at 30 °N. Close to the crest of the Massif, the Lost City hydrothermal field (LCHF) has been active for at least 120,000 years, venting fluids with a temperature of 40-90 °C. 5 km north of Lost City, a temperature profile has been measured in IODP Hole 1309D, with a near-conductive thermal gradient of ~100 °C/km ...

Conjugate Heat Transfer Analysis On Microchannel Heat Sinks For High Power LEDs

D. Chakravarthii [1]
[1] Universiti Sains Malaysia, Malaysia

Light emitting Diode (LED) has been proved to be the best resource for commercial as well as industrial lighting applications. However, thermal management in high power LEDs is a major challenge in which the thermal resistance (Rth) and rise in junction temperature (TJ) are notable parameters. Heat dissipation in the LED has been partly achieved with the evolution of efficient heat sinks. This ...

Mobility of Catalytic Self-Propelled Nanorods Modeling with COMSOL Multiphysics®

F. Lugli[1] and F. Zerbetto[1]
[1]Department of Chemistry “G. Ciamician”, Università di Bologna, Bologna, Italy

A small particle or a nano-sized object placed in a liquid is subject to random collisions with solvent molecules. The resulting erratic movement of the object is known as Brownian motion, which, in nature, cannot be used to any practical advantage both in natural systems (such as biomolecular motors) or by artificial devices. If energy is supplied by external source or by chemical reactions, ...

Validation of DNS Techniques for Dynamic Combined Indoor Air and Constructions Simulations Using an Experimental Scale Model

T. van Goch, and A. van Schijndel
Eindhoven University of Technology, Eindhoven, Netherlands

This paper presents a study on the application of Direct Numerical Solving (DNS) techniques using an experimental scale model. COMSOL Multiphysics is promising in solving dynamic heat and air transport. The experiments can be extremely useful as benchmark for CFD codes.

The Effect of Electrochemical Micro-Milling by Rotating Magnetic Field

H-Y. Shen[1], H-P. Tsui[1], J-C .Hung[1], S-Y. Lin[2], and B-H. Yan[2]
[1]Metal Industries Research and Development Centre, Taichung, Taiwan
[2]National Central University, Chungli, Taiwan

In this work, the process of micro-channels in electrochemical micro-milling by using rotating magnet assisted helical tool is presented. The results show helical tool and Lorentz force of the rotating magnetic field that enhance the renewal of the electrolyte and machining efficiency. The feed rate can be raised under the magnetic field assisted in terms of experimental results; moreover, the ...

A Mixed Boundary Value Problem That Arises in the Study of Adhesively Bonded Structures

R. Malek-Madani, and J.J. Radice
US Naval Academy, Annapolis, MD, USA

The study of deformation of an adhesively bonded sandwich structure reduces to solving the biharmonic equation for the Airy Stress subject to mixed boundary conditions. Because of the nature of the boundary conditions, this boundary value problem does not yield to the standard elementary methods and must be attacked by numerical methods. In this paper we will use COMSOL\'s capability in two ways ...

Coupling of Wired PCB With Microwave Radiation – 3D Simulation and Experimental Valuation

T. D. Bui[1], F. Bremerkamp[2], and M. Nowottnick[2]
[1]Department of Automobile Engineering, Thanh Do University, Ha Noi, Vietnam
[2]Institute of Electronic Appliances and Circuits, Department “Reliability and Safety of Electronic Systems”, University of Rostock, Rostock, Germany

Modern electronic assemblies and printed circuit boards (PCB) with their sensitive structures and elements have to be protected against environmental influences by conformal coating or casting compounds. In this case the main challenge is the simultaneous curing of the polymers and the safekeeping of the electronic elements and structures on the PCB. This implies the investigation of the heating ...

An Elastic and Hyperelastic Material Model of Joint Cartilage - Calculation of the Pressure Dependent Modulus of Elasticity by Comparison with Experiments and Simulations

T. Reuter, and M. Hoffmann
fzmb GmbH
Research Centre of Medical Technology and Biotechnology
Bad Langensalza, Germany

In this paper we introduce a elastic and hyperelastic model to describe the biomechanics of joint cartilage. As biomechanical property we calculated the pressure dependent E-modulus E = f(s) to describe the dependence of the biomechanical properties on pressure. The calculation based on the comparison and the iterative approach of the force-way-functions between the experiments and ...

3201 - 3210 of 3379 First | < Previous | Next > | Last