Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Microscale Modelling of the Frequency Dependent Resistivity of  Porous Media

J. Volkmann, O. Mohnke, N. Klitzsch, and R. Blaschek
E.ON Energy Research Center, RWTH-Aachen, Aachen, Germany

The frequency dependent electrical impedance of porous media is studied by modelling the charge transport in the electrolyte filled pore space using COMSOL Multiphysics.  The corresponding experimental method, called Spectral Induced Polarization (or Impedance Spectroscopy), shows a frequency dependent phase shift between a measured electric current and an applied alternating voltage. It is ...

Modeling of snRNP Motion in the Nucleoplasm

M. Blaziková[1], J. Malínský[2], D. Stanek[3], and P. Herman[1]
[1]Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
[2]Institute of Experimental Medicine, Prague, Czech Republic
[3]Institute of Molecular Genetics, Prague, Czech Republic

Small nuclear ribonucleoprotein particles (snRNPs) are essential supramolecular complexes involved in pre-mRNA splicing, the process of post-transcriptional RNA modifications. The particles undergo complex assembly steps inside the cell nucleus in a highly dynamic compartment called the Cajal body. We have previously shown that the free diffusion model does not fully describe the snRNP motion ...

Analyzing a Malfunctioning Clarifier with COMSOL’s Mixture Model

A. de Niet, A. van Nieuwenhuijzen, and A. Geilvoet
Witteveen+Bos, Deventer, The Netherlands

Clarifiers are used to separate sludge and water in waste water treatment plants. In this paper we analyze a malfunctioning clarifier using the mixture model. We are able to receive model results that are reasonably close to measurements from the real clarifier. With the model we can explain the bad separation of water and sludge in the clarifier. Engineers have proposed several actions in order ...

Development and Characterization of High Frequency Bulk Mode Resonators

H. Pakdast, Z. Davis
DTU Nanotech, Technical University of Denmark, Kgs. Lyngby, Denmark

This article describes the development of a bulk mode resonator which can be employed for detection of bio/chemical species in liquids.  The goal is to understand the mechanical and electrical properties of a bulk mode resonator device which exhibit high frequency resonance modes and Q-factor. A high resonance frequency is desirable because a small change in the resonator’s mass, for ...

Parameter Optimization for Finite-Element Method (FEM) based modeling of singlet oxygen during PDT

T. Zhu, and K. Wang
Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Photodynamic therapy(PDT) is a new cancer treatment modality using the photochemical reaction of a photosensitizing drug, light, and oxygen. The objective of this project is to determine the photochemical parameters necessary for singlet oxygen modeling during PDT using parameters obtained from a microscopic model.   FEM calculation in COMSOL Multiphysics was used to determine the model ...

Localization of Chemical Sources Using Stochastic Differential Equations in Realistic Environments

A. Mohammed, and A. Jeremic
McMaster University, Hamilton, L8S4K1, Canada

Signal processing algorithms for chemical sensing/monitoring have been subject of considerable research interest in the recent years mainly due to their diverse applicability. When the concentration of chemical agent is small, the dispersion of particles is governed by stochastic differential equations describing more complex motion mechanisms such as Brownian motion. In this paper we propose ...

Computational Analysis of the Mechanical and Thermal Stresses in a Thin Film PProDOT-Based Redox Capacitor

J. Sotero-Esteva[1], M. Rosario-Canales[2], P. Gopu[3], and J. Santiago-Avilés[3]

[1]Department of Mathematics, University of Puerto Rico at Humacao, Humacao, PR
[2]Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
[3]Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA

Among the several types of capacitors, the double-layer and redox types have gathered increasing attention to address some of the heavy power demands of modern technology. In redox capacitors, charge is stored chemically via oxidation/reduction processes in the active materials like electroactive polymers (EAPs) or metal oxides. This work investigates the stresses and heat flux of the electrode ...

AC/DC Modeling and Experimental Impedance Verification of 3D MEMS Inductor Coils

T. Reissman, and E. Garcia
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA

In this work, an analysis is presented for a 3-dimensional RF MEMS coil using the COMSOL AC/DC module in conjunction with the CAD import module. The realization of being able to produce such 3-dimensional RF coils allows for less surface area to be needed for similar inductor performance in comparison to larger planar RF coils by maintaining the same number of turns through super-positioning of ...

Temperature Excursions at the Pulp-Dentin Junction during the Curing of Light-Activated Dental Restorations

M. Jakubinek[1,2], C. Neill[1], C. Felix[3], R. Price[2,3], M. White[1,2]

[1]Departments of Chemistry and Physics, Dalhousie University, Halifax, NS, Canada
[2]Institute for Research in Materials, Dalhousie University, Halifax, NS, Canada
[3]Department of Dental Clinical Sciences, Dalhousie University, Halifax, NS, Canada

Heat produced during the curing of light-activated dental restorations could damage the dental pulp. Given the prevalence of composite restorations and the importance of avoiding injury to the pulp, efforts should be made to minimize the temperature increase that occurs at the pulp-dentin junction during light-curing. In this investigation we develop and evaluate a COMSOL Multiphysics FEM tooth ...

Building a Robust Numerical Model for Mass Transport Through Complex Porous Media

J. Perko[1], D. Mallants[1], E. Vermariën[2], and W. Cool[2]
[1]Belgian Nuclear Research Centre (SCK-CEN), Mol, Belgium
[2]Belgian Agency for Radioactive Waste and Enriched Fissile Material (ONDRAF/NIRAS), Mol, Belgium

Mass transport modelling through porous media is typically characterized by complex physics and geometry. In the particular case of radionuclide transport, modelling for radioactive waste repositories, an additional level of complexity, and thus uncertainty, originates from the long time frames involved. Performing a safety analysis of a radioactive waste disposal system requires therefore ...

3201 - 3210 of 3391 First | < Previous | Next > | Last