Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

CAE-Based Design and Optimization of a Plasma Reactor for Hydrocarbon Processing - new

C. Soares [1], F. A. Cassini [1], N. Padoin [1],
[1] Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil

Plasma reactors can be applied to the conversion of waste, biomass and fuels to synthesis gas (mixture of hydrogen and carbon dioxide) with efficiencies as higher as 90-95% and low energy demand, depending on the design optimization. In this work, a multi-step approach was applied to the investigation of the main physics involved in a rotating gliding arc (RGA) discharge reactor. COMSOL ...

Multiphysics Simulation of a Printed Circuit Heat Exchanger - new

A. Daouk [1], O. E. Petel [1], H. Saari [1],
[1] Carleton University, Ottawa, ON, Canada

Printed Circuit Heat Exchangers (PCHEs) are a type of compact heat exchangers that are made by diffusion bonding steel plates, where each plate is chemically etched to form semicircular passages that allow for fluid flow. They are ideally suited for high pressure and high temperature applications. The aim of the present work is to use COMSOL Multiphysics® software to model heat exchange within a ...

Novel Sensor Technology for Point of Care Diagnostics

V. Djakov
Sensor Development Director
Microvisk Technologies Ltd

Dr Vladislav Djakov is the co-founder of Microvisk Technologies Ltd and the inventor of its MEMS-based Technology. Born in Belgrade, Serbia he came to UK in 1995 to pursue M.Sc. in Artificial Intelligence followed by Ph.D. in Micro-robotics. With over 14 years of extensive ‘hands-on’ expertise on a number of micro-fabrication techniques, using standard and novel materials, as well as ...

Marine Vibrator Bubble Source Simulation and Testing - new

A. K. Morozov [1],
[1] Teledyne Marine Systems, North Falmouth, MA, USA

Marine Vibrators are a coherent type of sound source, which can be quieter and less harmful for marine habitants than traditional air-gun technology. Such source gives clearer, more precise and higher resolution imaging of the bottom properties due to the coherent signal and streamer array processing. Teledyne Marine Systems is developing a coherent seismic marine sound source technology ...

Evaluation of Binary Mixture Models for 3D Printed Biosensors - new

J. Persad [1], S. Rocke [1], D. Ringis [1], A. Abdool [1],
[1] Department of Electrical and Computer Engineering, University of the West Indies, St. Augustine, Trinidad and Tobago

3D printing as applied to the area of electronics manufacture covers a broad range of traditional printing technologies [1]. The attraction in 3D printing lies in its potential to disrupt the traditional photolithographic/subtractive manufacturing line with simpler additive processes. Additive electronics manufacturing which utilises 3D printing techniques allow for fewer production steps and ...

Numerical Investigation of Heat Transfer in an Attic Duct Model - new

H. Liu [1], A. Fallahi [1], J. Kosny [1]
[1] Fraunhofer Center for Sustainable Energy Systems, Boston, MA, USA

Air ducts play an important role in the energy efficiency of residential homes across the country. While transporting the conditioned air from the HVAC system to the conditioned space, 30-40% of the thermal energy can be lost due to conduction [1]. The loss of thermal energy can reduce the HVAC efficiency to up to 18% [2]. Air ducts can be responsible for up to 12% of the air leakage or 30% of ...

Modeling an Ejector for Hydrogen Recirculation in a PEM Fuel Cell - new

X. Corbella [1], R. Torres [2], J. Grau [2], M. Allué [3],
[1] Escola Universitària d’Enginyeria Tècnica Industrial de Barcelona (Universitat Politècnica de Catalunya), Barcelona, Spain
[2] Fluid Mechanics Department (Escola Universitària d’Enginyeria Tècnica Industrial de Barcelona - Universitat Politècnica de Catalunya), Barcelona, Spain
[3] Institut de Robòtica I Informàtica Industrial (Consejo Superior de Investigaciones Científicas – Universitat Politècnica de Catalunya), Barcelona, Spain

PEM Fuel Cells’ durability and performance can be increased using an ejector based hydrogen recirculation system. In this work, a CFD model has been implemented to simulate the flow within an ejector used to recirculate hydrogen in PEM Fuel Cell systems. The model has been validated experimentally and has been used to design and manufacture an ejector that will be implemented in a fuel cell test ...

Simulating Organogenesis in COMSOL: Towards Efficient 3D Simulations of Organogenesis - new

D. Barac [1], Z. Karimadini [1], R. Croce [1], D. Iber [1]
[1] Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Basel, Switzerland

One of the major challenges in biology concerns the integration of data across length and time scales into a consistent framework: how do macroscopic properties and functionalities arise from the molecular regulatory networks ­ and how do they evolve? A deeper understanding of morphogenesis and organogenesis in particular is required to advance tissue engineering. Recent advancements in 3D ...

Modeling of Space-Charge Effects in 3D Thermionic Devices - new

P. Zilio [1], W. Raja [2], A. Alabastri [3], R. Proietti Zaccaria [2]
[1] Istituto Italiano di Tecnologia, Italy
[2] Istituto Italiano di Tecnologia, Italy
[3] Rice University, USA

The formation of space charge clouds is a well known problem that affects thermionic emitters in regimes of high current emission. Although some analytical models have been presented, suitable for 1D geometries, the modeling of the problem in complex 3D structures remains a challenge due to the mutual coupling between electron trajectories and field they produce. Here we propose a model able to ...

Development of a RheoDSC, an Instrument for Simultaneous Rheological and Calorimetric Measurements - new

L. Van Lokeren [1], R. Verhelle [1], C. Block [1], P. Van Puyvelde [2], G. Van Assche [1]
[1] Vrije Universiteit Brussel, Brussels, Belgium
[2] Catholic University of Leuven, Leuven, Belgium

Transformations in polymers, such as polymerisation, melting/crystallization, and phase separation/remixing, are associated with changes in both rheological and thermal properties. To permit simultaneous calorimetric and rheometric measurements, the RheoDSC was developed. The RheoDSC combines two commercial instruments, a TA Instruments Q2000 DSC and a TA Instruments AR-G2 dynamic rheometer. A ...

3201 - 3210 of 3222 First | < Previous | Next > | Last