See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2019 Collection

Multiphysics Modeling of Engineered Structured Sorbents for the Adsorption of Carbon Dioxide and Water Vapor from Manned Spacecraft Atmospheres

J. Knox
NASA, Huntsville, AL, USA

In NASA’s Vision for Space Exploration, humans will once again travel beyond the confines of earth’s gravity, this time to remain there for extended periods. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must ... Read More

Modeling Carbon Nanotube FET Physics in COMSOL Multiphysics®

A. Kalavagunta
Vanderbilt University, Nashville, TN, USA

Carbon nanotube FETs are generating much interest in the nanoscale electronics area. Typically subthreshold behavior in these devices has been modeled using the Laplace equation. Above threshold behavior uses self-consistent solutions to the Poisson and continuity equations. Accurate ... Read More

Image Based-Mesh Generation for Realistic Simulation of theTranscranial Current Stimulation

R. Said[1], R. Cotton[1], P. Young[1], A. Datta[2], M. Elwassif[2] , and M. Bikson[2]
[1] Simpleware Ltd, Exeter, Devon, UK
[2] Department of Biomedical Eng., The City College of New York, New York, NY, USA

This paper will discuss the comprehensive solution adopted for converting the 3D digital/medical images directly into the computational model. The workflow using Simpleware Software – ScanIP and + ScanFE – will be illustrated including the option for directly exporting fully compatible ... Read More

Computational Simulation of Electrohydrodynamic Systems Pertaining to Micro and Nano scale Fluid Flow Phenomenon

M. Seiler[1], and B. Kirby[2]
[1]Department of Engineering Physics, Cornell
University, NY, USA
[2]Department of Mechanical Engineering, Cornell
University, NY, USA

Modeling of 3D AC electro-osmotic pumps is relevant to the creation of portable or implantable lab-on-a-chip devices for mm/s tunable fluid flows attainable with battery scale voltages. In this analysis using COMSOL Multiphysics we investigate the modeling challenges of computationally ... Read More

Finite Element Modeling of Dielectric-Paraelectric Composite Materials

K. Zhou, S. Alpay, and S. Boggs
Institute of Material Science, University of Connecticut, Storrs, CT, USA

Finite Element analysis is used to model 2-D and 3-D paraelectric-dielectric composites (BaTiO3 spherical fillers randomly distributed in constant dielectric matrix). The effective dielectric response and tunability are studied under different filler sizes and different volume fractions. ... Read More

Can the Drumhead be Decomposed from Spectra? - An Application for the Chesapeake Bay

K. McIlhany[1], and R. Malek-Madani[2]
[1]Physics Department, United States Naval Academy, Annapolis, MD, USA
[2]Mathematics Department, United States Naval Academy, Annapolis, MD, USA

In 1966, mathematician Mark Kac proposed the question "Can One Hear the Shape of a Drum?" in an article for American Mathematical Monthly. In attempting to resolve the Chesapeake Bay from an eigenfunctional approach, a one-to-one mapping of this famous problem has been identified. The ... Read More

Solid Food Pasteurization by means of Ohmic Heating: Influence of Process Parameters

M. Zell[1], D. Cronin[1], D. Morgan[1], F. Marra[2], and J. Lyng[1]
[1]School of Agriculture, Food Science and Veterinary Medicine, Agriculture and Food Science Centre, College of Life Sciences, UCD Dublin, Ireland
[2]Dipartimento di Ingegneria Chimica e Alimentare, Università degli Studi di Salerno, Italy

Pasteurization of solid food undergoing ohmic heating has been analyzed using COMSOL Multiphysics on the basis of a previously validated multiphysics model. The simulation of pasteurization by ohmic heating involves simultaneous solution electrical potential within the food, heat ... Read More

Analysis of Heat, Mass Transport, and Momentum Transport Effects in Complex Catalyst Shapes for Gas-Phase Heterogeneous Reactions Using COMSOL Multiphysics

A. Nagaraj[1], and P. Mills[2]

[1]Department of Electrical Engineering and Computer Science, Texas A&M University, Kingsville, TX, USA
[2]Department of Chemical and Natural Gas Engineering, Texas A&M University, Kingsville, TX, USA

The global demand for sulfuric acid has been forecast to grow at an average of 2.6% per year from 2005 – 2010. The primary objective of this work is to analyze the performance of various heterogeneous catalyst shapes that have been proposed for the oxidation of SO2 to SO3 used in the ... Read More

Development of an Interlinked Curriculum Component Module for Microchemical Process Systems Components Using COMSOL Multiphysics

A. Mokal, and P. Mills

Department of Chemical and Natural Gas Engineering, Texas A&M University, Kingsville, TX, USA

COMSOL Multiphysics provides a powerful numerical platform where various models for microchemical process technology components can be readily created for both education and research. This modeling tool allows chemical engineering students to focus on understanding the effects of various ... Read More

Steady-state simulation of mono-valent ion distributions within a nanofluidic channel

W. Booth[1], J. Schiffbauer[1], J. Fernandez[2], K. Kelley[3], A. Timperman[3], and B. Edwards[1]

[1]Physics Department, West Virginia University, Morgantown, WV, USA
[2]Chemical Engineering Department, West Virginia University, Morgantown, WV, USA
[3]Chemistry Department, West Virginia University, Morgantown, WV, USA

The steady-state non-equilibrium distributions of two species of mono-valent ions around a charged nanofluidic channel have been examined. Large reservoirs were placed on either side of the nanoscale channel to simulate bulk concentration of ions in a fluid. Results from COMSOL ... Read More