Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling of Through-the-Snow Electric Field Propagation for Rescue Systems

N. Ayuso[1], V. Bataller[1], A. Muñoz[2], D. Tardioli[1], J. A. Cuchí[1], F. Lera[3], and J. L. Villarroel[1]
[1]Aragón Institute for Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
[2]Advanced Research Laboratories of I3A, Walqa Technological park, Huesca, Spain
[3]Institute of Material Science of Aragón, CSIC-Universidad de Zaragoza, Zaragoza, Spain

Propagation models for avalanche rescue systems are studied here. The paper focuses on the through-the-snow electric field propagation at ISM frequencies, comparing several models (air model, snow model, three-layered model) and using different solving method (geometrical optics, numerical solution in Matlab and FEM with COMSOL). The simulation results are fitted to experimental data, finding ...

Study of Subwavelength Gratings to Understand Their Polarization Behaviour

M. G. Sridharan[1], A. Prabhakar[2], and S. Bhattacharya[2]
[1]Photonics Group, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India
[2]Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India

Phase gratings are used in many applications owing to their high transmission and thus higher diffraction efficiencies. COMSOL is based on finite element modeling and is chosen for 2 reasons; firstly, because it can handle complex 2-D and 3-D geometries and secondly, it can handle the vector nature of these structures. The objective of the design is to compare the results of a commonly used ...

Modeling of the Photo-Mechanical Response of Liquid-Crystal Elastomers

G. Cerretti[1], J.-C. Gomez-Lavocat[1][2], K. Vynck[1], D.S. Wiersma[1][3]
[1]European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
[2]The Institute of Photonic Sciences (ICFO), Mediterranean Technology Park, Castelldefels, Spain
[3]Istituto Nazionale di Ottica (INO), National Research Council (CNR), Florence, Italy

Liquid-crystal elastomers (LCEs) [1] have attracted a great attention in recent years due to their high potential in a wide range of applications, from microfluidics components [2] to artificial muscles [3]. The photo-mechanical response of LCEs is due to their constitutive photo-sensitive molecules, which change shape when absorbing part of the incident light. These microscopic deformations can ...

Numerical Optimization Technique for the Optimal Design of the Surface Plasmon Grating Coupler

C. Caiseda[1], V. Aksyuk[2], I. Griva[3]
[1]Inter American University of Puerto Rico, Bayamon, PR, USA
[2]National Institute of Standards and Technology, Gaithersburg, MD, USA
[3]George Mason University, Fairfax, VA, USA

The optimal design of the grating coupler for surface plasmon generation is revisited for its interdisciplinary importance in the efficient use of energy, and the strong dependence of the energy convergence rate of the system on the design. This work contributes a comprehensive gradient based numerical optimization technique to optimize both geometry of the grating and parameters of the ...

A Study of Geometrical Shape of Central Plate in Electrostatic Actuation

K. M. V. Swamy[1], B. G. Sheeparamatti[1], G. R. Prakash [1]
[1]Department of Electronics and Communication, Basaveshwara Engineering College, Bagalkot, Karnataka, India

This study is performed to know which central plate geometry is best suited for electrostatically actuated switch. The simulation is carried out in COMSOL Multiphysics, where user is free to model the geometry without depth knowledge about geometrical dependency of electrostatic. The study of the centrally suspended geometrical models such as circle, square and rectangle suspended by two short ...

COMSOL Multiphysics® Simulation of Chiral Molecule Interaction with Chiral Structures

I. Zabkov[1], V. Klimov[2], A. Pavlov[2], D. Guzatov[3]
[1]MIPT, Moscow, Russia
[2]Lebedev Physical Institute, Moscow, Russia
[3]Yanka Kupala Grodno State University, Grodno, Belarus

Influence of chiral objects on spontaneous emission of atoms and molecules is under attention nowadays. The problem of interaction of chiral molecules with one [1] or two chiral [2] spheres was solved analytically recently by our group. The analytical results however are very difficult and needed to be calculated carefully. We modify the RF Module of COMSOL Multiphysics® in order to simulate ...

Simulation of Light Coupling Reciprocity for a Photonic Grating

V. Kivijärvi[1], M. Erdmanis[1], I. Tittonen[1]
[1]Aalto University, Department of Micro- and Nanosciences, Espoo, Finland

SOI (Silicon on Insulator) technology utilizes silicon components on SiO2 layer. Propagating electric field distribution in a SOI waveguide is called mode of the waveguide. Photonic gratings are formed by etching grooves on the top of a waveguide. Gratings can operate in two directions. They can guide incident beam into a waveguide or a waveguide mode out of the structure. We study the ...

Mode Conversion Losses in a Smooth Wall Circular Waveguide

R. Kumar[1], H. B. Pandya [1], S. Danani [1], P. Vasu [1], V. Kumar[1]
[1]ITER-India, Gandhinagar, Gujarat, India

The ITER-ECE transmission lines consist of smooth-wall circular waveguides, including miter bends and other components. The performance of the TL is crucial to ensuring that the requirements for the diagnostic to measure the plasma parameters are met. COMSOL Multiphysics® has a finite element method with a built-in Eigenmode matrix solver. The accuracy of COMSOL solutions depends on the size of ...

Design of a MEMS Resonator for a Centre Frequency Greater than 26.35 MHz and Temperature Coefficient Frequency Less than 0.5 ppm

S.Manikandan[1], R.Radeep krishna[1]
[1]Kalasalingam University, Department of ECE, Srivilliputtur ,Krishnan koil, Tamil Nadu, India

The variability of the design parameters caused by material properties like thermal conductivity is the major challenge in Micro Electromechanical System (MEMS). In resonator design the basic problem is that the frequency changes with temperature variation and quantitative explanation with respect to this varies. The change can be attributed to the stability in terms of frequency drift in parts ...

Thermal Analysis of Metamaterial for High Energy Microwave (HEM) Devices

Vaishali Rawat[1], Sougata Chatterjee[2], Shantanu Das[3], S.N.Kale[1]
[1]Defense Institute of Advanced Technology, Pune, India
[2]Giant Metrewave Radio Telescope,Tata Institute of Fundamental Research,Pune, India
[3]Reactor Control Division, B.A.R.C., & Adjunct Faculty, DIAT, Pune, India

Metamaterial [1, 2] is an artificially structured material where it’s electrical (ϵ), magnetic (μ) and its refraction properties (n) are simultaneously negative in narrow frequency band. Currently, metamaterials are being widely used in microwave and radio frequencies as devices [3, 4] like filter, coupler, antenna etc. However, the applicability of metamaterial as High Energy Microwave (HEM) ...