Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation of the Destruction Effects in CMOS-Devices caused by Impact of Fast Transient Electromagnetic Pulses

M. Rohe, S. Korte, and M. Koch
Institute for the Basics of Electrical Engineering and Measurement Science, Leibniz Universität Hannover, Germany

In this paper will be presented how an electronic system and its components will respond in case of an impact of an external electromagnetic pulse (EMP). In the first instance the coupling process of transient electromagnetic pulses into electronic systems will be shown. Out of that the disturbing signal inside the system, which is necessary for the following simulation, will be described ...

Multiphysics Applications for Sustainable Engineering and Industrial Processes

S. Savarese [1], L. Kremer [1], C. Sanjeu [1]
[1] Armelio, Les Ulis, France

While addressing the pressing need for better, more sustainable engineering and production improvements, Armélio has identified that easy-to-use, customized, multiphysics applications would fulfill customer requirements. Hence, we now design and deliver COMSOL Multiphysics® apps bringing multiphysics simulation into research labs and production plants. Applications range from heat transfer ...

Modeling the Effect of Headspace Steam on Microwave Heating of Mashed Potato - new

J. Chen[1], K. Pitchai[1], D. Jones[1], J. Subbiah[1]
[1]University of Nebraska-Lincoln, Lincoln, NE, USA

Introduction: Domestic microwave ovens are widely used to heat food products, because of rapid and convenient heating. Nonuniform heating is the biggest issue in microwave heating process, which also causes food quality and safety issues. Microwave heating models are promising tools to assist in developing food products that deliver uniform heating. Due to intensive heating, moisture evaporation ...

Chiral surface plasmon polaritons on metallic nanowires

S. Zhang
Institute of Physics CAS
Beijing
China

Chiral SPPs can be generated by linearly polarized light incident at the end of a nanowire, exciting a coherent superposition of three specific nanowire waveguide modes. Chirality is preserved in the emitted photons, creating a subwavelength ¼ wave plate.

Electromagnetic Wave Analysis of Wave And Shielded Stripline

S. Singh[1], A. Marwaha[1]
[1]Department of Electronics and Communication Engineering, Sant Longowal Institute of Engineering Technology Longowal, Punjab, India

Electromagnetic wave analysis of waveguide has been done in this paper with the help of Finite Element Method (FEM) based COMSOL Multiphysics. The design is further extended by placing conductor on a dielectric slab included in the waveguide to form a shielded microstrip transmission line. The simulated models are analyzed to determine the wave propagation characteristics. The validation is ...

Analysis of a Prototype MRI Hybrid Birdcage RF Coil with Uncertainty Quantification (*)

J. T. Fong [1],
[1] National Institute of Standards & Technology, Gaithersbug, MD, USA

1. INTRODUCTION. In a magnetic resonance imaging (MRI) system (see Fig. 1), it is necessary to excite the nuclei of a patient into coherent precession for imaging. This requires coupling between the nuclei and a source of radio frequency (RF) power (the transmitter). To receive a meaningful signal, one also needs to couple the nuclei to an external circuitry (the receiver). These two ...

Thermo-Elastic Response of Cutaneous and Subcutaneous Tissues to Noninvasive Radiofrequency Heating

J. Jimenez-Lozano[1], P. Vacas-Jacques[1], W. Franco[1]
[1]Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA

Radiofrequency (RF) technology offers unique advantages for noninvasive selective heating of relatively large volumes of tissue. In this work, we present a mathematical model for selective non-invasive, non-ablative RF heating of cutaneous and subcutaneous tissue (with detailed fiber septa structures) including their thermo-elastic response. Our analysis shows that the fiber septa architecture ...

Design and Simulation of MEMS-based Piezoelectric Accelerometer

Siram Sai Krishna[1], Nuti Venkata Subrahmanya Ayyappa Sai[1], Dr.K.Srinivasa Rao[2]
[1]Lakireddy Bali Reddy College of Engineering, Mylavaram, Andhra Pradesh, India
[2]Professor & HOD, Dept. of Electronics and Instrumentation Engineering, Lakireddy Bali Reddy College of Engineering, Mylavaram, Andhra Pradesh, India

The Micro electro mechanical systems (MEMS) technology provides us a platform to interface between mechanical and electrical components. In this paper, we have designed MEMS accelerometer based on piezoelectric property, and simulated using COMSOL Multiphysics®. The design, which has PZT kept in the annular diaphragm, provides good sensitivity. When this accelerometer is subjected to stress ...

Metamaterial Based Patch Antenna with Broad Bandwidth Designed by COMSOL Multiphysics® Software

李学识 [1], 郑李娟 [1],
[1] 广东工业大学,广州,中国

A patch antenna based on metamaterials of composite split-ring-resonators (CSRRs) and strip gaps is designed with COMSOL Multiphysics® software. The antenna is constructed by using CSRR structures in forms of circular rings on the patch and employing strip gaps on the ground plane. The signal is fed by a common microstrip line that connects the patch and the input port. The antenna is based on a ...

COMSOL Multiphysics® Simulations to Study Nonlocal Properties of a Au Nanoshell Using Quantum Hydrodynamic Theory

M. Khalid [1], C. Ciracì [1],
[1] Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano, Italy

Quantum Hydrodynamic Theory (QHT) provides an excellent method to study both near-field and far-field properties of multiscale plasmonic systems, especially for systems whose sizes make it computationally prohibitive for the density functional theory approach [1]. The microscopic behavior of these structures significantly differs from the classical predictions due to nonlocal or quantum effects. ...