Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Uncertainty of FEM Solutions Using a Nonlinear Least Squares and Design of Experiments Approach

J. T. Fong [1], N. A. Heckert [1], J. J. Filliben [1], P. V. Marcal [2], R. Rainsberger [3]
[1] National Institute of Standards and Technology, Gaithersburg, MD, USA
[2] MPACT Corp., Oak Park, CA, USA
[3] XYZ Scientific Applications, Inc., Livermore, CA, USA

Uncertainty in COMSOL Multiphysics® software simulations due to (a) model parameter uncertainties and (b) mesh-induced truncation errors, is estimated using a design-of-experiments approach [1, 2, 3], and a nonlinear least squares logistics fit method [4, 5], respectively. Examples to illustrate both approaches are given using the COMSOL RF Module (in an application of a MRI coil design) and ...

Simulating Plasmon Effects in Nano-Structured OLED Cathodes Using COMSOL Multiphysics® Software

L. Wang [1],
[1] Konica Minolta Laboratory USA, Inc., San Mateo, CA, USA

Organic light emitting diode (OLED) is an emerging technology for next-generation flat panel display and solid-state area lighting thanks to its many advantages such as light weight, low operating voltage, and flexibility, etc. A typical OLED has a multilayer structure that includes a glass or plastic substrate, an anode (ITO), a hole transport layer (HTL), an emitting layer (EML), an electron ...

Modeling Dielectric Heating: A First Principles Approach

R. W. Pryor [1],
[1] Pryor Knowledge Systems, Inc., Bloomfield Hills, MI, USA

Dielectric heating is an important, widely employed electromagnetic heating technology utilized by consumers, small businesses and industry. This model is used to explore the physical differences manifested when different frequencies are utilized to execute the heat generation process on similar materials in similar geometries. This model is of interest to people with applications in RF or ...

Plasmonic Waveguide Analysis

K. C. Koppenhoefer [1], S. Yushanov [1], J. S. Crompton [1],
[1] AltaSim Technologies, Columbus, OH, USA

Surface Plasmons (SP) or Surface Plasmon Polaritons (SPP) are electromagnetic excitations that propagate at the interface between a dielectric and a conductor, and are evanescently confined in the perpendicular direction to the propagation. They arise via coupling of the electromagnetic field to oscillations of the conductor’s electron plasma and are characterized in terms of dispersion and ...

Design Optimization of Waveguide Applicator for Microwave Hyperthermia Cancer Treatment

P. Kumar [1], S. Kalra[1], A. Marwaha[1]
[1]Department of Electronics and Communication Engineering, Sant Longowal Institute of Engineering Technology Longowal, Punjab, India

The optimized design of a waveguide applicator has been proposed for superficial microwave hyperthermia using COMSOL Multiphysics 3.5a. In microwave hyperthermia cancer treatment body tissue is exposed to high temperatures using external and internal heating devices. Non-Invasive or external hyperthermia is used to treat tumors that are in or just below the skin (superficial). Non-invasive ...

Prospects of Multiphysics Simulations to Steer the Development of High Brightness LED Technologies

T. Lopez [1], O. Shchekin [1],
[1] Lumileds, Eindhoven, Netherlands

The versatility of COMSOL Multiphysics® software has positioned it at competitive levels against other considered industrial-standard engineering software tools. This contribution is directed towards emphasizing the need of further developing the basic concepts of this versatile tool in order to enable the implementation of complex physics modeling techniques in rapid, flexible and customized ...

Key-Holes Magnetron Design and Multiphysics Simulation

A. Leggieri[1], F. Di Paolo[1], D. Passi[1]
[1]Univeristy of Rome "Tor Vergata" - Department of Electronic Engineering, Rome, Italy

This paper describes the design and characterization of an 8 slots resonant cavity Magnetron, which undergoes thermal-structural effects due to cathode heating. The proposed study involves Thermal Stress, Eigen-frequency and Particle Tracing analysis based on COMSOL Multiphysics®. Magnetrons are well known and often utilized High Power Radiofrequency Vacuum Tube oscillators. In order to ...

Best Practices in EM Simulation in COMSOL Multiphysics®

M. Olsson [1]
[1] COMSOL AB, Stockholm, Sweden

This session addresses some common challenges in electromagnetic modeling and simulation. The introductory presentation will cover how to pick and choose between a large number of available formulations in three separate modules including the AC/DC Module, RF Module, and Wave Optics Module. Examples are discussed from wave propagation modeling to low frequency modeling. Topics covered ...

3D Electromagnetic Field Simulation in Microwave Ovens: A Tool to Control Thermal Runaway

T. Santos[1], L.C. Costa[1,2], M. Valente[1,2], J. Monteiro[1,2], and J. Sousa[3]
[1]University of Aveiro, Portugal
[2]I3N, Aveiro, Portugal
[3]TEKA Portugal S.A., Ílhavo, Portugal

In microwave heating applications, the energy is introduced directly into the volume of the material and as consequence the quality of the process is highly dependent on the uniformity of the electromagnetic field distribution along it. That is, the non uniformity of the heating is a potential problem with serious consequences. Thermal runaway is the most critical, in materials with temperature ...

Extraction of 13.56 MHz NFC-Reader Antenna Parameters for Matching Circuit Design

Prof. Dr.-Ing. habil. A. K. Palit [1],
[1] ZF-Lemfoerder Electronic GmbH, ZF-Friedrichshafen AG. Group, Espelkamp, Germany

Introduction: RFID system uses a Transponder and the near field communication (NFC) antenna and a matching circuit (Figure-1) in which at least latter two must be optimally designed for a higher efficiency. Typically, RFID antennas are flat inductive coils with 2 to 4 turns and are printed directly on the PCB. The larger antenna size implies larger operating distance whereas, the number of ...